首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
教育与普及   2篇
综合类   1篇
  2019年   1篇
  2018年   2篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
本文制备了基于红荧烯(rubrene)分子的有机发光二极管,并测量了不同温度和注入电流下器件的磁电导(magneto-conductance,MC).实验发现器件的MC曲线随着磁场的增加主要表现出了3段变化,在室温(300K)低磁场(|B|6 mT)范围内,MC_1在小电流时表现为快速上升,在中等电流时先缓慢上升再下降,在大电流时则为缓慢下降;在中等磁场范围(6 mT|B|17 mT),MC_2在各电流范围均表现为缓慢上升;在高磁场范围(17mT|B|300 mT),MC_3在各电流范围均表现为迅速下降.随着温度的降低(以电流为50μA为例),低磁场范围(|B|6 mT),MC_1在温度为300 K时表现为缓慢上升,温度为250~150 K时则先缓慢上升再下降,温度为100~20 K时表现为缓慢下降;中高磁场范围(|B|6 mT)的MC_2和MC_3的线型则基本不变.对电流密度-电压特性曲线的深入分析发现器件中存在陷阱,由此说明器件中除了自由电荷对三重态激子的解离(Q+T→Q+e+h)以及极化子对间的系间窜越(PP~1?PP~3)作用以外,还包括陷阱辅助的三重态激子淬灭作用(即陷阱束缚的三重态激子与自由的极化子(Tt+P→S0+P_t)和陷阱束缚的极化子与三重态激子(T+P_t→S0+P)之间的作用),这4种微观机制的共同作用导致结构复杂的MC线型,且电流和温度对它们还有较好的调控作用.本研究不仅加深了对rubrene器件中三重态激子与电荷相互作用的理解,而且还丰富了有机磁电导曲线的表现形式.  相似文献   
2.
采用不同浓度的热活化延迟荧光(thermally activated delayed fluorescence,TADF)材料2,3,5,6-四(3,6-二苯基-9-咔唑基)-对苯二腈(2,3,5,6-tetrakis(3,6-diphenylcarbazol-9-yl)-1,4-dicyanobenzene,4CzTPN-Ph)为掺杂剂,三(8-羟基喹啉)铝(tris-8-hydroxyquinoline aluminum,Alq3)为主体材料制备了发光层为Alq3:x%4CzTPN-Ph的有机发光二极管器件,并测量了室温下不同注入电流和不同掺杂浓度,以及固定某一电流和掺杂浓度在不同温度下器件的磁电致发光(magneto-electroluminescence,MEL)效应和磁电导(magneto-conductance,MC)效应.实验发现,在主客体掺杂类型器件中,与普通掺杂器件减小的磁效应相比,这种器件具有明显的反常磁效应——即表现出增强的MEL和MC幅值.以室温下注入电流为150μA的实验为例,发光层为Alq3:5%4CzTPN-Ph器件的MEL幅值在磁场为300m T处达到了10%左右,大约是参考器件(发光层为CBP:5%4CzTPN-Ph)的MEL幅值(~0.75%)的13倍,且该器件对应的MC幅值在磁场为300 m T处达到了6%左右,大约是此参考器件MC幅值(~0.12%)的50倍.此外,这种掺杂器件的MEL和MC明显受到掺杂浓度的调控,当掺杂浓度达15%左右时,MEL和MC幅值可达到最大值.在不同温度下,这种掺杂器件的MEL和MC值均随着温度的降低而减小.通过分析器件的能级结构和光谱可知,Alq3:4CzTPN-Ph器件具有主客体分子间特殊的能级排布,造成客体分子的能级陷阱较弱,外加磁场抑制三重态激子对电荷的散射作用(TQA)就可产生显著的MEL和MC幅值,从而得到不同于普通掺杂器件的反常磁效应.此外,由于TQA过程受三重态激子浓度与载流子浓度的影响,掺杂浓度和实验温度也能通过影响三重态激子浓度和载流子浓度来对TQA反应强弱进行调控,从而有效地调控这种反常磁效应.本研究工作有助于深入理解基于4CzTPN-Ph发光器件微观机制的演化过程,并将促进有机发光二极管在磁学器件方面的应用.  相似文献   
3.
把三重态激子(T_1)与单重态激子(S_1)能量接近的典型热辅助延迟荧光材料4CzTPN-Ph作为掺杂客体,以具有不同T_1能量的材料分别作为掺杂主体、空穴传输层和电子传输层,制备了一系列基于4CzTPN-Ph掺杂的有机发光二极管,并测量了这些器件在室温下的磁电致发光效应(Magneto-Electroluminescence, MEL)和磁电导效应(Magneto-Conductance, MC),以及器件随温度变化的MEL和MC.实验发现:室温下,当空穴传输层、电子传输层和掺杂主体分别选用T_1能量高低不同的材料时,各器件的MEL和MC在低磁场范围(|B|20 mT)分别呈现出不同变化规律的线型,具体表现为当器件各功能层同时都选用较高T_1能量的材料时,器件MEL的幅度在低磁场范围内表现出随注入电流的减小而变小的反常行为,并出现了由正到负的转变, MC曲线则表现出符号为负且其幅度随磁场的增加而变大的RISC属性;而当器件的空穴传输层、电子传输层或掺杂主体材料的三重态能量较低时, MEL和MC表现出减弱的RISC过程;并且,当电子传输层或掺杂主体选用三重态能量与4CzTPN-Ph接近的Alq_3时, MEL和MC直接表现出类似未掺杂的Alq_3荧光器件的线型.分析器件的能量传输过程可知, T_1能量高低不同的空穴传输层、电子传输层或掺杂主体材料对4CzTPN-Ph三重态能量的束缚能力不同,造成各器件中T_1激子不同的传输通道和能量损失,从而使各器件在低磁场范围出现了不同的MEL和MC线型.本研究不仅丰富了能量传输对4CzTPN-Ph发光器件内部机制的认识,同时也对TADF器件中三重态激子的可控应用提供了一定的理论参考.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号