首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   67篇
  免费   0篇
理论与方法论   3篇
现状及发展   37篇
研究方法   2篇
综合类   24篇
自然研究   1篇
  2018年   1篇
  2017年   3篇
  2015年   1篇
  2013年   1篇
  2012年   2篇
  2011年   7篇
  2010年   2篇
  2008年   3篇
  2007年   1篇
  2006年   4篇
  2005年   2篇
  2004年   2篇
  2003年   3篇
  2002年   2篇
  2001年   2篇
  2000年   2篇
  1998年   1篇
  1996年   2篇
  1992年   2篇
  1985年   1篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1977年   2篇
  1972年   4篇
  1971年   2篇
  1970年   3篇
  1966年   2篇
  1965年   2篇
  1964年   4篇
排序方式: 共有67条查询结果,搜索用时 31 毫秒
1.
Technological advances in DNA recovery and sequencing have drastically expanded the scope of genetic analyses of ancient specimens to the extent that full genomic investigations are now feasible and are quickly becoming standard. This trend has important implications for infectious disease research because genomic data from ancient microbes may help to elucidate mechanisms of pathogen evolution and adaptation for emerging and re-emerging infections. Here we report a reconstructed ancient genome of Yersinia pestis at 30-fold average coverage from Black Death victims securely dated to episodes of pestilence-associated mortality in London, England, 1348-1350. Genetic architecture and phylogenetic analysis indicate that the ancient organism is ancestral to most extant strains and sits very close to the ancestral node of all Y. pestis commonly associated with human infection. Temporal estimates suggest that the Black Death of 1347-1351 was the main historical event responsible for the introduction and widespread dissemination of the ancestor to all currently circulating Y. pestis strains pathogenic to humans, and further indicates that contemporary Y. pestis epidemics have their origins in the medieval era. Comparisons against modern genomes reveal no unique derived positions in the medieval organism, indicating that the perceived increased virulence of the disease during the Black Death may not have been due to bacterial phenotype. These findings support the notion that factors other than microbial genetics, such as environment, vector dynamics and host susceptibility, should be at the forefront of epidemiological discussions regarding emerging Y. pestis infections.  相似文献   
2.
3.
Genetic analysis of the mouse brain proteome   总被引:24,自引:0,他引:24  
Proteome analysis is a fundamental step in systematic functional genomics. Here we have resolved 8,767 proteins from the mouse brain proteome by large-gel two-dimensional electrophoresis. We detected 1,324 polymorphic proteins from the European collaborative interspecific backcross. Of these, we mapped 665 proteins genetically and identified 466 proteins by mass spectrometry. Qualitatively polymorphic proteins, to 96%, reflect changes in conformation and/or mass. Quantitatively polymorphic proteins show a high frequency (73%) of allele-specific transmission in codominant heterozygotes. Variations in protein isoforms and protein quantity often mapped to chromosomal positions different from that of the structural gene, indicating that single proteins may act as polygenic traits. Genetic analysis of proteomes may detect the types of polymorphism that are most relevant in disease-association studies.  相似文献   
4.
Cannibalism in the Madagascan dinosaur Majungatholus atopus   总被引:1,自引:0,他引:1  
Rogers RR  Krause DW  Curry Rogers K 《Nature》2003,422(6931):515-518
Many lines of evidence have been brought to bear on the question of theropod feeding ecology, including functional and physiological considerations, morphological constraints, taphonomic associations, and telling--although rare--indications of direct ingestion. Tooth marks of theropods, although rarely described and generally left unassigned to a particular taxon, can provide unique clues into predator-prey interaction, and can also yield insights into the extent of carcass utilization. Here we describe a sample of tooth-marked dinosaur bone recovered from three well-documented localities in the Upper Cretaceous Maevarano Formation of Madagascar that provides insights into the feeding ecology of the abelisaurid theropod Majungatholus atopus. Intensely tooth-marked elements from multiple individuals show that Majungatholus defleshed dinosaur carcasses. Furthermore, Majungatholus clearly fed upon the remains of not only sauropods, but also conspecifics, and thus was a cannibal. Cannibalism is a common ecological strategy among extant carnivores, but until now the evidence in relation to carnivorous dinosaurs has been sparse and anecdotal.  相似文献   
5.
Buckley GA  Brochu CA  Krause DW  Pol D 《Nature》2000,405(6789):941-944
Although the image of crocodyliforms as 'unchanged living fossils' is naive, several morphological features of the group are thought to have varied only within narrow limits during the course of evolution. These include an elongate snout with an array of conical teeth, a dorsoventrally flattened skull and a posteriorly positioned jaw articulation, which provides a powerful bite force. Here we report an exquisitely preserved specimen of a new taxon from the Late Cretaceous of Madagascar that deviates profoundly from this Bauplan, possessing an extremely blunt snout, a tall, rounded skull, an anteriorly shifted jaw joint and clove-shaped, multicusped teeth reminiscent of those of some ornithischian dinosaurs. This last feature implies that the diet of the new taxon may have been predominantly if not exclusively herbivorous. A close relationship with notosuchid crocodyliforms, particularly Uruguaysuchus (Late Cretaceous, Uruguay) is suggested by several shared derived features; this supports a biogeographical hypothesis that Madagascar and South America were linked during the Late Cretaceous.  相似文献   
6.
The thyrotropin receptor (TSHR) exhibits elevated cAMP signaling in the basal state and becomes fully activated by thyrotropin. Previously we presented evidence that small-molecule ligands act allosterically within the transmembrane region in contrast to the orthosteric extracellular hormone-binding sites. Our goal in this study was to identify positions that surround the allosteric pocket and that are sensitive for inactivation of TSHR. Homology modeling combined with site-directed mutagenesis and functional characterization revealed seven mutants located in the allosteric binding site that led to a decrease of basal cAMP signaling activity. The majority of these silencing mutations, which constrain the TSHR in an inactive conformation, are found in two clusters when mapped onto the 3D structural model. We suggest that the amino acid positions identified herein are indicating locations where small-molecule antagonists, both neutral antagonists and inverse agonists, might interfere with active TSHR conformations.  相似文献   
7.
Summary The ultrastructure of the compound eyes of several photonegative selection lines and their unselected photopositive controls of five species of themelanogaster subgroup was analyzed. A qualitative phenotypic change concerning the rhabdomeres in one of the photonegative selection lines ofD. mauritiana could be detected. It was proved that this structural aberration of the rhabdomeres is caused by a parallel mutation of the mutantora (outer rhabdomeres absent) ofD. melanogaster.  相似文献   
8.
Tight junctions seal intercellular clefts via membrane-related strands, hence, maintaining important organ functions. We investigated the self-association of strand-forming transmembrane tight junction proteins. The regulatory tight junction protein occludin was differently tagged and cotransfected in eucaryotic cells. These occludins colocalized within the plasma membrane of the same cell, coprecipitated and exhibited fluorescence resonance energy transfer. Differently tagged strand-forming claudin-5 also colocalized in the plasma membrane of the same cell and showed fluorescence resonance energy transfer. This demonstrates self-association in intact cells both of occludin and claudin-5 in one plasma membrane. In search of dimerizing regions of occludin, dimerization of its cytosolic C-terminal coiledcoil domain was identified. In claudin-5, the second extracellular loop was detected as a dimer. Since the transmembrane junctional adhesion molecule also is known to dimerize, the assumption that homodimerization of transmembrane tight junction proteins may serve as a common structural feature in tight junction assembly is supported. Received 6 October 2005; received after revision 14 December 2005; accepted 27 December 2005 †These authors contributed equally to this work.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号