首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
现状及发展   3篇
综合类   7篇
  2011年   2篇
  2005年   3篇
  2002年   2篇
  1968年   2篇
  1965年   1篇
排序方式: 共有10条查询结果,搜索用时 218 毫秒
1
1.
Limited single-spacecraft observations of Jupiter's magnetopause have been used to infer that the boundary moves inward or outward in response to variations in the dynamic pressure of the solar wind. At Earth, multiple-spacecraft observations have been implemented to understand the physics of how this motion occurs, because they can provide a snapshot of a transient event in progress. Here we present a set of nearly simultaneous two-point measurements of the jovian magnetopause at a time when the jovian magnetopause was in a state of transition from a relatively larger to a relatively smaller size in response to an increase in solar-wind pressure. The response of Jupiter's magnetopause is very similar to that of the Earth, confirming that the understanding built on studies of the Earth's magnetosphere is valid. The data also reveal evidence for a well-developed boundary layer just inside the magnetopause.  相似文献   
2.
Saturn is a source of intense kilometre-wavelength radio emissions that are believed to be associated with its polar aurorae, and which provide an important remote diagnostic of its magnetospheric activity. Previous observations implied that the radio emission originated in the polar regions, and indicated a strong correlation with solar wind dynamic pressure. The radio source also appeared to be fixed near local noon and at the latitude of the ultraviolet aurora. There have, however, been no observations relating the radio emissions to detailed auroral structures. Here we report measurements of the radio emissions, which, along with high-resolution images of Saturn's ultraviolet auroral emissions, suggest that although there are differences in the global morphology of the aurorae, Saturn's radio emissions exhibit an Earth-like correspondence between bright auroral features and the radio emissions. This demonstrates the universality of the mechanism that results in emissions near the electron cyclotron frequency narrowly beamed at large angles to the magnetic field.  相似文献   
3.
It has often been stated that Saturn's magnetosphere and aurorae are intermediate between those of Earth, where the dominant processes are solar wind driven, and those of Jupiter, where processes are driven by a large source of internal plasma. But this view is based on information about Saturn that is far inferior to what is now available. Here we report ultraviolet images of Saturn, which, when combined with simultaneous Cassini measurements of the solar wind and Saturn kilometric radio emission, demonstrate that its aurorae differ morphologically from those of both Earth and Jupiter. Saturn's auroral emissions vary slowly; some features appear in partial corotation whereas others are fixed to the solar wind direction; the auroral oval shifts quickly in latitude; and the aurora is often not centred on the magnetic pole nor closed on itself. In response to a large increase in solar wind dynamic pressure Saturn's aurora brightened dramatically, the brightest auroral emissions moved to higher latitudes, and the dawn side polar regions were filled with intense emissions. The brightening is reminiscent of terrestrial aurorae, but the other two variations are not. Rather than being intermediate between the Earth and Jupiter, Saturn's auroral emissions behave fundamentally differently from those at the other planets.  相似文献   
4.
Zusammenfassung Thalidomid verursacht an trächtigen Neuseeland-Kaninchen nach oraler Verabreichung starke Missbildungen des Wurfes. Geringe strukturelle Abweichungen können die Teratogenie zerstören: Zwei solche Verbindungen,N-Methoxy-thalidomid und 2-Phthalimido-glutaramid, sind nicht teratogen, während ein Esteramid, ein Thalidomidanalog mit offener Kette, hauptsächlich Missbildungen der inneren Organe erzeugt.

This research was supported in part by Public Health Service Research Grants, no. HD-01496 from the National Institute of Child Health and Human Development and No. FR-00251 from the Division of Research Facilities and Resources to The Jackson Laboratory, Bar Harbor, Maine; and Public health Service Grant No. CA-08748 to The Sloan-Kettering Institute for Cancer Research.  相似文献   
5.
Although there are substantial differences between the magnetospheres of Jupiter and Saturn, it has been suggested that cryovolcanic activity at Enceladus could lead to electrodynamic coupling between Enceladus and Saturn like that which links Jupiter with Io, Europa and Ganymede. Powerful field-aligned electron beams associated with the Io-Jupiter coupling, for example, create an auroral footprint in Jupiter's ionosphere. Auroral ultraviolet emission associated with Enceladus-Saturn coupling is anticipated to be just a few tenths of a kilorayleigh (ref. 12), about an order of magnitude dimmer than Io's footprint and below the observable threshold, consistent with its non-detection. Here we report the detection of magnetic-field-aligned ion and electron beams (offset several moon radii downstream from Enceladus) with sufficient power to stimulate detectable aurora, and the subsequent discovery of Enceladus-associated aurora in a few per cent of the scans of the moon's footprint. The footprint varies in emission magnitude more than can plausibly be explained by changes in magnetospheric parameters--and as such is probably indicative of variable plume activity.  相似文献   
6.
Jupiter's X-ray aurora has been thought to be excited by energetic sulphur and oxygen ions precipitating from the inner magnetosphere into the planet's polar regions. Here we report high-spatial-resolution observations that demonstrate that most of Jupiter's northern auroral X-rays come from a 'hot spot' located significantly poleward of the latitudes connected to the inner magnetosphere. The hot spot seems to be fixed in magnetic latitude and longitude and occurs in a region where anomalous infrared and ultraviolet emissions have also been observed. We infer from the data that the particles that excite the aurora originate in the outer magnetosphere. The hot spot X-rays pulsate with an approximately 45-min period, a period similar to that reported for high-latitude radio and energetic electron bursts observed by near-Jupiter spacecraft. These results invalidate the idea that jovian auroral X-ray emissions are mainly excited by steady precipitation of energetic heavy ions from the inner magnetosphere. Instead, the X-rays seem to result from currently unexplained processes in the outer magnetosphere that produce highly localized and highly variable emissions over an extremely wide range of wavelengths.  相似文献   
7.
8.
Zusammenfassung Thalidomid wurde in Gelatinkapseln peroral (500 mg/Tag/Kaninchen) an 30 gravide Kaninchen vom 6. bis 11. Tag nach Konzeption verabreicht. Von 109 klassifizierbaren Jungen waren nur 4% normal: 77 überlebten, 9 waren tot und 23 wurden abortiert; 20 weitere waren teilweise resorbiert und deshalb unklassifizierbar. Die drei genetisch verschiedenen Kaninchenstämme des Versuchs wiesen signifikante Unterschiede auf in Typus, relativer Zahl und Verteilung der Missbildungen.  相似文献   
9.
The interaction of the solar wind with Earth's magnetosphere gives rise to the bright polar aurorae and to geomagnetic storms, but the relation between the solar wind and the dynamics of the outer planets' magnetospheres is poorly understood. Jupiter's magnetospheric dynamics and aurorae are dominated by processes internal to the jovian system, whereas Saturn's magnetosphere has generally been considered to have both internal and solar-wind-driven processes. This hypothesis, however, is tentative because of limited simultaneous solar wind and magnetospheric measurements. Here we report solar wind measurements, immediately upstream of Saturn, over a one-month period. When combined with simultaneous ultraviolet imaging we find that, unlike Jupiter, Saturn's aurorae respond strongly to solar wind conditions. But in contrast to Earth, the main controlling factor appears to be solar wind dynamic pressure and electric field, with the orientation of the interplanetary magnetic field playing a much more limited role. Saturn's magnetosphere is, therefore, strongly driven by the solar wind, but the solar wind conditions that drive it differ from those that drive the Earth's magnetosphere.  相似文献   
10.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号