首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
研究方法   2篇
综合类   6篇
  2012年   1篇
  2008年   2篇
  2005年   1篇
  2004年   1篇
  1992年   1篇
  1990年   1篇
  1986年   1篇
排序方式: 共有8条查询结果,搜索用时 968 毫秒
1
1.
Transforming growth factor-beta 1 (TGF-beta 1) is a multifunctional growth factor that has profound regulatory effects on many developmental and physiological processes. Disruption of the TGF-beta 1 gene by homologous recombination in murine embryonic stem cells enables mice to be generated that carry the disrupted allele. Animals homozygous for the mutated TGF-beta 1 allele show no gross developmental abnormalities, but about 20 days after birth they succumb to a wasting syndrome accompanied by a multifocal, mixed inflammatory cell response and tissue necrosis, leading to organ failure and death. TGF-beta 1-deficient mice may be valuable models for human immune and inflammatory disorders, including autoimmune diseases, transplant rejection and graft versus host reactions.  相似文献   
2.
3.
The abundance and dynamics of copy number variants (CNVs) in mammalian genomes poses new challenges in the identification of their impact on natural and disease phenotypes. We used computational and experimental methods to catalog CNVs in rat and found that they share important functional characteristics with those in human. In addition, 113 one-to-one orthologous genes overlap CNVs in both human and rat, 80 of which are implicated in human disease. CNVs are nonrandomly distributed throughout the genome. Chromosome 18 is a cold spot for CNVs as well as evolutionary rearrangements and segmental duplications, suggesting stringent selective mechanisms underlying CNV genesis or maintenance. By exploiting gene expression data available for rat recombinant inbred lines, we established the functional relationship of CNVs underlying 22 expression quantitative trait loci. These characteristics make the rat an excellent model for studying phenotypic effects of structural variation in relation to human complex traits and disease.  相似文献   
4.
The rat is an important system for modeling human disease. Four years ago, the rich 150-year history of rat research was transformed by the sequencing of the rat genome, ushering in an era of exceptional opportunity for identifying genes and pathways underlying disease phenotypes. Genome-wide association studies in human populations have recently provided a direct approach for finding robust genetic associations in common diseases, but identifying the precise genes and their mechanisms of action remains problematic. In the context of significant progress in rat genomic resources over the past decade, we outline achievements in rat gene discovery to date, show how these findings have been translated to human disease, and document an increasing pace of discovery of new disease genes, pathways and mechanisms. Finally, we present a set of principles that justify continuing and strengthening genetic studies in the rat model, and further development of genomic infrastructure for rat research.  相似文献   
5.
6.
7.
G E Shull  L K Lane  J B Lingrel 《Nature》1986,321(6068):429-431
The sodium/potassium-dependent ATPase [(Na+ + K+)ATPase], which establishes and maintains the Na+ and K+ gradients across the plasma membrane of animal cells, consists of two subunits, alpha and beta. Complementary DNA clones encoding the catalytic (alpha) subunit of sheep kidney and Torpedo californica electroplax enzymes have previously been isolated and characterized. However, there is little information concerning the primary structure of the beta-subunit, a glycoprotein of unknown function and relative molecular mass (Mr) approximately 55,000 (ref. 3). Here we describe the isolation and characterization of a cDNA clone containing the entire coding region of the beta-subunit of the sheep kidney (Na+ + K+)ATPase. We also discuss structural aspects of the protein and present evidence for a possible evolutionary relationship with the KdpC subunit of the Escherichia coli K+-ATPase.  相似文献   
8.
Provenzano V  Shapiro AJ  Shull RD 《Nature》2004,429(6994):853-857
The magnetocaloric effect is the change in temperature of a material as a result of the alignment of its magnetic spins that occurs on exposure to an external magnetic field. The phenomenon forms the basis for magnetic refrigeration, a concept purported to be more efficient and environmentally friendly than conventional refrigeration systems. In 1997, a 'giant' magnetocaloric effect, between 270 K and 300 K, was reported in Gd5Ge2Si2, demonstrating its potential as a near-room-temperature magnetic refrigerant. However, large hysteretic losses (which make magnetic refrigeration less efficient) occur in the same temperature range. Here we report the reduction (by more than 90 per cent) of these hysteretic losses by alloying the compound with a small amount of iron. This has the additional benefit of shifting the magnetic entropy change peak (a measure of the refrigerator's optimal operating temperature) from 275 K to 305 K, and broadening its width. Although the addition of iron does not significantly affect the refrigerant capacity of the material, a greater net capacity is obtained for the iron-containing alloy when the hysteresis losses are accounted for. The iron-containing alloy is thus a much-improved magnetic refrigerant for near-room-temperature applications.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号