首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   0篇
  国内免费   1篇
丛书文集   1篇
现状及发展   4篇
研究方法   4篇
综合类   21篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2011年   2篇
  2008年   1篇
  2007年   5篇
  2006年   4篇
  2005年   6篇
  2004年   2篇
  2003年   3篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
排序方式: 共有30条查询结果,搜索用时 46 毫秒
1.
Protein kinase C (PKC), which comprises 11 closely related isoforms, has been implicated in a wide variety of cellular processes, such as growth, differentiation, secretion, apoptosis and tumour development. Among the PKC isotypes, PKC-delta is unique in that its overexpression results in inhibition of cell growth. Here we show that mice that lack PKC-delta exhibit expansion of the B-lymphocyte population with the formation of numerous germinal centres in the absence of stimulation. The rate of proliferation in response to stimulation was greater for B cells from PKC-delta-deficient mice than for those from wild-type mice. Adoptive transfer experiments suggested that the hyperproliferation phenotype is B-cell autonomous. Production of interleukin-6 was markedly increased in B cells of PKC-delta-null mice as a result of an increase in the DNA-binding activity of NF-IL6. Furthermore, the PKC-delta-deficient mice contain circulating autoreactive antibodies and display immune-complex-type glomerulonephritis, as well as lymphocyte infiltration in many organs. These results suggest that PKC-delta has an indispensable function in negative regulation of B-cell proliferation, and is particularly important for the establishment of B-cell tolerance.  相似文献   
2.
3.
The vegetation spatial heterogeneity and ecological characteristics in different soil regions were analyzed by surveying the vegetation in 12 different soil regions of Inner Mongolia, China, including conifer- ous-broadleaf deciduous forests, shrub, grassland, and desert regions with 1122 large 2 cm × 2 cm quad- rats (actual size 30 km × 30 km, referred to as L-quadrat hereafter) in about 1.18 million km2. Each L- quadrat was divided into four small 1 cm × 1 cm quadrats (actual size 15 km × 15 km, S-quadrat). The vegetation was analyzed based on the beta-binomial distribution to describe the frequency of occurrence and spatial heterogeneity for each kind of vegetation. The weighted average of the heterogeneity of all vegeta- tion in the same soil region provides a measure of the soil regional landscape level heterogeneity which de- scribes the spatial complexity of the regional landscape composition of the existing vegetation. Comparison of the vegetation characteristics in the 12 soil regions shows that, the calcic gray soil has the highest average vegetation type per quadrat. The largest soil region is calcic chestnut soil and has the most vegetation types. Every soil region has its own dominant vegetation sequence which dominates in occurrence and dominant vegetation types which dominates in spatial heterogeneity. For the Inner Mongolian vegetation, the weighted average of the heterogeneity is 0.60 and the vegetation diversity index is 4.47.  相似文献   
4.
5.
Positive and negative peptide signals control stomatal density   总被引:2,自引:0,他引:2  
The stoma is a micro valve found on aerial plant organs that promotes gas exchange between the atmosphere and the plant body. Each stoma is formed by a strict cell lineage during the early stages of leaf development. Molecular genetics research using the model plant Arabidopsis has revealed the genes involved in stomatal differentiation. Cysteine-rich secretory peptides of the EPIDERMAL PATTERNING FACTOR-LIKE (EPFL) family play crucial roles as extracellular signaling factors. Stomatal development is orchestrated by the positive factor STOMAGEN/EPFL9 and the negative factors EPF1, EPF2, and CHALLAH/EPFL6 in combination with multiple receptors. EPF1 and EPF2 are produced in the stomatal lineage cells of the epidermis, whereas STOMAGEN and CHALLAH are derived from the inner tissues. These findings highlight the complex cell-to-cell and intertissue communications that regulate stomatal development. To optimize gas exchange, particularly the balance between the uptake of carbon dioxide (CO(2)) and loss of water, plants control stomatal activity in response to environmental conditions. The CO(2) level and light intensity influence stomatal density. Plants sense environmental cues in mature leaves and adjust the stomatal density of newly forming leaves, indicating the involvement of long-distance systemic signaling. This review summarizes recent research progress in the peptide signaling of stomatal development and discusses the evolutionary model of the signaling machinery.  相似文献   
6.
Cloning of adiponectin receptors that mediate antidiabetic metabolic effects   总被引:231,自引:0,他引:231  
Adiponectin (also known as 30-kDa adipocyte complement-related protein; Acrp30) is a hormone secreted by adipocytes that acts as an antidiabetic and anti-atherogenic adipokine. Levels of adiponectin in the blood are decreased under conditions of obesity, insulin resistance and type 2 diabetes. Administration of adiponectin causes glucose-lowering effects and ameliorates insulin resistance in mice. Conversely, adiponectin-deficient mice exhibit insulin resistance and diabetes. This insulin-sensitizing effect of adiponectin seems to be mediated by an increase in fatty-acid oxidation through activation of AMP kinase and PPAR-alpha. Here we report the cloning of complementary DNAs encoding adiponectin receptors 1 and 2 (AdipoR1 and AdipoR2) by expression cloning. AdipoR1 is abundantly expressed in skeletal muscle, whereas AdipoR2 is predominantly expressed in the liver. These two adiponectin receptors are predicted to contain seven transmembrane domains, but to be structurally and functionally distinct from G-protein-coupled receptors. Expression of AdipoR1/R2 or suppression of AdipoR1/R2 expression by small-interfering RNA supports our conclusion that they serve as receptors for globular and full-length adiponectin, and that they mediate increased AMP kinase and PPAR-alpha ligand activities, as well as fatty-acid oxidation and glucose uptake by adiponectin.  相似文献   
7.
为了揭示草地生态系统的现存生物量随时间的变化规律与气候条件和人为干扰(放牧压,施肥量等)之间的关系,从1974年开始至1994年,每年的4月至11月,在位于日本中部那须地区的国立草地研究所内的人造围栏放牧草场进行了放牧试验.结果表明,在1974至1994年的21年间,在不同放牧处理(放牧压分别为轻度和重度/施肥分少量和大量)的条件下,地上现存生物量的季节变化非常明显,其变化范围为:150~380gDWm-2.用4次方多项式检验表明牧草成长模式呈双峰曲线,每一年中不同放牧条件下地上现存生物量的最大值都出现在6月份左右,第二个峰值出现在9,10月份.复合回归分析的结果得出了体现现存生物量和气温,放牧压(或施肥量)之间的定量关系的多项回归方程式.协方差分析结果表明放牧压力,施肥量以及季节和年度的变化,以及他们之间的相互作用对现存生物量有着显著影响(P<0.05)或极显著影响(P<0.01).本研究表明在现存放牧强度下不会对地上生物量造成毁灭性的影响,而是在其承受范围之内.  相似文献   
8.
Ikeda N  Ohsumi H  Ohwada K  Ishii K  Inami T  Kakurai K  Murakami Y  Yoshii K  Mori S  Horibe Y  Kitô H 《Nature》2005,436(7054):1136-1138
Ferroelectric materials are widely used in modern electric devices such as memory elements, filtering devices and high-performance insulators. Ferroelectric crystals have a spontaneous electric polarization arising from the coherent arrangement of electric dipoles (specifically, a polar displacement of anions and cations). First-principles calculations and electron density analysis of ferroelectric materials have revealed that the covalent bond between the anions and cations, or the orbital hybridization of electrons on both ions, plays a key role in establishing the dipolar arrangement. However, an alternative model-electronic ferroelectricity-has been proposed in which the electric dipole depends on electron correlations, rather than the covalency. This would offer the attractive possibility of ferroelectric materials that could be controlled by the charge, spin and orbital degrees of freedom of the electron. Here we report experimental evidence for ferroelectricity arising from electron correlations in the triangular mixed valence oxide, LuFe(2)O(4). Using resonant X-ray scattering measurements, we determine the ordering of the Fe(2+) and Fe(3+) ions. They form a superstructure that supports an electric polarization consisting of distributed electrons of polar symmetry. The polar ordering arises from the repulsive property of electrons-electron correlations-acting on a frustrated geometry.  相似文献   
9.
Proliferative vitreoretinal diseases such as diabetic retinopathy, proliferative vitreoretinopathy (PVR), and age-related macular degeneration are a leading cause of decreased vision and blindness in developed countries. In these diseases, retinal fibro(vascular) membrane (FVM) formation above and beneath the retina plays an important role. Gene expression profiling of human FVMs revealed significant upregulation of periostin. Subsequent analyses demonstrated increased periostin expression in the vitreous of patients with both proliferative diabetic retinopathy and PVR. Immunohistochemical analysis showed co-localization of periostin with α-SMA and M2 macrophage markers in FVMs. In vitro, periostin blockade inhibited migration and adhesion induced by PVR vitreous and transforming growth factor-β2 (TGF-β2). In vivo, a novel single-stranded RNAi agent targeting periostin showed the inhibitory effect on experimental retinal and choroidal FVM formation without affecting the viability of retinal cells. These results indicated that periostin is a pivotal molecule for FVM formation and a promising therapeutic target for these proliferative vitreoretinal diseases.  相似文献   
10.
Helicobacter pylori cagA-positive strains are associated with gastritis, ulcerations and gastric adenocarcinoma. CagA is delivered into gastric epithelial cells and, on tyrosine phosphorylation, specifically binds and activates the SHP2 oncoprotein, thereby inducing the formation of an elongated cell shape known as the 'hummingbird' phenotype. In polarized epithelial cells, CagA also disrupts the tight junction and causes loss of apical-basolateral polarity. We show here that H. pylori CagA specifically interacts with PAR1/MARK kinase, which has an essential role in epithelial cell polarity. Association of CagA inhibits PAR1 kinase activity and prevents atypical protein kinase C (aPKC)-mediated PAR1 phosphorylation, which dissociates PAR1 from the membrane, collectively causing junctional and polarity defects. Because of the multimeric nature of PAR1 (ref. 14), PAR1 also promotes CagA multimerization, which stabilizes the CagA-SHP2 interaction. Furthermore, induction of the hummingbird phenotype by CagA-activated SHP2 requires simultaneous inhibition of PAR1 kinase activity by CagA. Thus, the CagA-PAR1 interaction not only elicits the junctional and polarity defects but also promotes the morphogenetic activity of CagA. Our findings revealed that PAR1 is a key target of H. pylori CagA in the disorganization of gastric epithelial architecture underlying mucosal damage, inflammation and carcinogenesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号