首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  完全免费   20篇
  综合类   37篇
  2018年   4篇
  2017年   20篇
  2016年   6篇
  2015年   3篇
  2014年   3篇
  2000年   1篇
排序方式: 共有37条查询结果,搜索用时 46 毫秒
1.
为了兼顾视频人脸识别中识别准确率和实时性,提出了基于卷积神经网络(CNN)和CUDA加速的实时视频人脸识别方法。构建了一个6层结构的CNN人脸识别网络,将在视频帧中通过Adaboost算法检测到的人脸输入所构建的CNN中进行视频人脸识别,结合CUDA并行计算架构,对算法进行加速。此外为了更适用于实际视频监控情况,通过对CNN网络结构末尾Softmax分类器的分类结果进行多级判决引入了开集人脸识别功能。从多个角度对该方法进行了实验验证,结果证明,此方法可满足识别准确率和实时性要求,同时对于视频中人脸姿态变化、光照变化、距离远近等都具有良好的鲁棒性。  相似文献
2.
基于卷积神经网络的商品图像精细分类   总被引:1,自引:0,他引:1  
针对某一类别商品图像的精细分类,研究并实现了深度学习中的卷积神经网络方法.所设计的卷积神经网络由2个卷积层、2个亚采样层及1个完全连接层组成,特征平面的神经元只对其感受野的重叠区域做出反应,由反向传播算法调整网络参数最终完成学习任务.通过鞋类图像的精细分类实验表明,该方法平均分类正确率可达91.5%.  相似文献
3.
基于非线性修正函数的卷积神经网络图像识别研究   总被引:1,自引:1,他引:0       下载免费PDF全文
为了解决深度学习中使用线性修正函数ReLUs对于模型的表达能力欠缺,而柔性光滑函数Softplus无稀疏表达能力的问题。基于ReLUs和Softplus函数各自的优点,将ReLUs函数的稀疏表达能力和Softplus函数的光滑特性结合起来,提出一种使用非线性修正函数作为神经元激励的方法。分析了不同激活函数的性能,并且用卷积神经网络在MNIST和CIFAR-10标准数据库上进行图像分类识别实验,实验结果表明,使用非线性修正激活函数不仅可以加快网络收敛速度,也可以提高识别准确率,同时也不依赖于池化方法的选择。  相似文献
4.
为了提高人工神经网络处理动态信号能力 ,在时延神经网络 ( TDNN )和卷积神经网络 ( CNN)的基础上 ,针对孤立音节的特点 ,提出了一个新的网络结构 ,研究了其学习算法。新网络在进一步改进后用于汉语孤立数码语音识别 ,对特定人和非特定人任务 ,分别达到了 97.7%和 95 .6%的正确识别率 (无拒识 ) ,其性能远远高于多层前向感知机( ML P)和时延神经网络 ,与传统的隐马尔科夫模型 ( HMM)方法是可以相比的。  相似文献
5.
提出运用双层卷积神经网络模型实现基于足底压力图像的步态识别方法。首先,对足底压力数据采集系统采集的图像作相应预处理;然后,用双层卷积神经网络模型学习得到足底压力图像的单层和双层卷积特征;最后,将卷积特征训练分类器得到分类结果。实验结果验证了该算法的有效性。  相似文献
6.
随着视频监控系统的大规模普及,视频监控系统的效用评价成为一个重要的研究课题。当前视频监控系统评价只考虑了摄像机的覆盖率,缺少对摄像机覆盖质量的量化评价。该文提出了一种基于深度卷积神经网络的监控摄像机覆盖质量评价算法。将摄像机覆盖质量评价问题转化为对摄像机所采集视频帧的质量评价问题,探讨了基于视频帧的摄像机覆盖质量等级的分级策略,标注了一个摄像机视频帧质量等级数据集;设计了一种新颖的多维标签赋值方法,利用深度卷积网络学习鲁棒的视频帧表示,进一步基于支持向量回归机( SVR)学习视频质量回归函数,从而实现对摄像机覆盖质量的鲁棒估计。实验结果表明:该算法能够准确地对监控摄像机的覆盖质量进行自动评测,有效监测了摄像机监控质量的实时变化。  相似文献
7.
基于级联回归的人脸对齐方法已经取得了很大的成就,但是由于复杂的级联回归器设计、人为设计特征等局限性的影响使得人脸对齐没有找到一个性能更好的解决方案,尤其对于大姿态、大表情等条件下的人脸对齐任务。因此,为解决该问题,本文提出了一种新颖的人脸对齐方法—基于人脸局部形状约束。首先利用卷积神经网络(CNN)初始化人脸整体形状;然后利用人脸局部区域的同质性,将人脸区域进行划分,对每一个区域定义局部形状约束;最后再由整体形状估计做为全局约束,组合各个面部局部形状约束,对整体面部特征点进行回归。实验结果表明,该方法提高了人脸对齐的精确度且速度上达到了实时。  相似文献
8.
近年来,深度包检测技术和基于统计特征的网络流量识别技术迅速发展,但它们分别存在不能识别加密流量和依赖人对特征主观选择的缺陷。文章提出了基于卷积神经网络的流量识别方法,将网络数据按照一定的规则转换为灰度图像进行识别,并根据TCP数据包的有序性和UDP数据包的无序性,对原始的网络数据进行了扩展,以进一步提高识别率。实验数据表明,该方法对应用程序和应用层协议两个层次的网络流量具有较高的检测率。  相似文献
9.
在车牌字符识别的某些场合中,获得的字符通常存在切割不均匀、光照对比度强烈、遮挡严重等强噪声污染。针对被强噪声污染的数字字符,本文提出基于Caffe深度学习框架的字符识别算法,在Caffe框架下搭建卷积神经网络,并对网络参数训练获得了一个鲁棒性强、识别精度高的网络结构。实验结果表明,在低噪声、中度噪声、强噪声污染情况下,文章中提出的方法相比当前典型的识别方法,在数字字符识别上均具有较好的识别能力,平均识别率高出将近5%,而在强噪声污染情况下,识别效果具有更加明显的优势。  相似文献
10.
针对车体多自由度振动对基于激光图像技术的钢轨廓形动态测量所造成的影响,提出一种新颖的钢轨测量廓形畸变识别方法.首先根据钢轨廓形特征和畸变前后的几何差异,设计了一种三通道且参数独立的卷积神经网络结构用于畸变识别,其输入分别为原始廓形图像的降采样、轨鄂点周边裁剪图像和轨底点周边裁剪图像.为了有效训练该网络,通过采集大量正常廓形图像和畸变廓形图像来构建带标签训练样本库.利用训练后的卷积神经网络,在室内钢轨廓形动态测量平台上进行大量的测量廓形畸变识别实验.实验结果表明本文识别方法的精度和查全率均能达到92%以上,验证了该方法的有效性和可靠性.  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号