首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  完全免费   1篇
  综合类   2篇
  2020年   1篇
  2013年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
针对典型风帆体型建筑的风荷载采用风洞试验方法进行研究,给出典型风向下风帆建筑的平均风压和脉动风压的分布特征,探讨该体型建筑产生此类分布的原因,并分析围护结构设计时风帆体型建筑的最不利受风区域.研究表明:风帆容易形成"前压后吸"的风压分布,对于迎风面积大、厚度却相对较小的风帆建筑整体抗风较为不利;脉动风压系数与平均风压系数分布规律较为相似,背风区的风压脉动小于侧风区;当风帆建筑锋利边缘处于侧迎风时,来流风会在锋利边缘发生显著的气动分离,使得该区域出现极大的负压.  相似文献
2.
极值风压和风压非高斯特性是建筑主体和围护结构抗风设计的重要问题,但其流场机制尚未被澄清。采用大涡模拟方法,在雷诺数Re为22 000的条件下,研究了方柱表面风压非高斯特性随风向角的变化规律,分析了风压非高斯区域与平均流场的关系,基于瞬时流场结构探讨了方柱表面出现极值风压的流场机理。研究表明,方柱表面风压非高斯区域主要分布在方柱后角部位和背风面,而方柱侧面的剪切层再附区域(即分离泡区域)则并未出现明显的风压非高斯现象;方柱后角部位极值风压是由间歇性出现的角部附着涡导致,角部附着涡的形成与方柱尾流中的卡门涡有紧密联系;而方柱背风面极值风压则是由方柱尾流卡门涡的回旋作用引起,极值风压的发生位置会随尾流卡门涡的移动而改变。  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号