首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   69篇
  免费   0篇
系统科学   2篇
现状及发展   34篇
研究方法   2篇
综合类   31篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2013年   1篇
  2012年   1篇
  2011年   3篇
  2010年   1篇
  2008年   1篇
  2007年   1篇
  2005年   4篇
  2004年   3篇
  2003年   2篇
  2002年   2篇
  2000年   4篇
  1999年   2篇
  1998年   1篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
  1990年   2篇
  1988年   2篇
  1987年   2篇
  1985年   2篇
  1983年   3篇
  1979年   2篇
  1978年   1篇
  1974年   2篇
  1972年   2篇
  1971年   2篇
  1970年   1篇
  1969年   2篇
  1967年   2篇
  1965年   6篇
  1964年   2篇
  1963年   1篇
  1958年   1篇
排序方式: 共有69条查询结果,搜索用时 31 毫秒
11.
Summary The synthesis of 17-hydroxy-17-hydroxymethyl-4-androsten-3-one fromReichsteins compound S is described. Transformation of 3,3-ethylenedioxy-17-hydroxy-17-hydroxymethyl-5-androsten into 17-methyl-isotestosterone demonstrates the configuration of the substituents at C-17.  相似文献   
12.
13.
14.
Type 2 or non-insulin-dependent diabetes mellitus (NIDDM) is the most common form of diabetes worldwide, affecting approximately 4% of the world's adult population. It is multifactorial in origin with both genetic and environmental factors contributing to its development. A genome-wide screen for type 2 diabetes genes carried out in Mexican Americans localized a susceptibility gene, designated NIDDM1, to chromosome 2. Here we describe the positional cloning of a gene located in the NIDDM1 region that shows association with type 2 diabetes in Mexican Americans and a Northern European population from the Botnia region of Finland. This putative diabetes-susceptibility gene encodes a ubiquitously expressed member of the calpain-like cysteine protease family, calpain-10 (CAPN10). This finding suggests a novel pathway that may contribute to the development of type 2 diabetes.  相似文献   
15.
The surface-expressed transmembrane CX3C chemokine ligand 1 (CX3CL1/fractalkine) induces firm adhesion of leukocytes expressing its receptor CX3CR1. After shedding by the disintegrins and metalloproteinases (ADAM) 10 and 17, CX3CL1 also acts as soluble leukocyte chemoattractant. Here, we demonstrate that transmembrane CX3CL1 expressed on both endothelial and epithelial cells induces leukocyte transmigration. To investigate the underlying mechanism, we generated CX3CR1 variants lacking the intracellular aspartate-arginine-tyrosine (DRY) motif or the intracellular C-terminus which led to a defect in intracellular calcium response and impaired ligand uptake, respectively. While both variants effectively mediated firm cell adhesion, they failed to induce transmigration and rather mediated retention of leukocytes on the CX3CL1-expressing cell layer. Targeting of ADAM10 led to increased adhesion but reduced transmigration in response to transmembrane CX3CL1, while transmigration towards soluble CX3CL1 was not affected. Thus, transmembrane CX3CL1 mediates leukocyte transmigration via the DRY motif and C-terminus of CX3CR1 and the activity of ADAM10.  相似文献   
16.
17.
Axis formation occurs in plants, as in animals, during early embryogenesis. However, the underlying mechanism is not known. Here we show that the first manifestation of the apical-basal axis in plants, the asymmetric division of the zygote, produces a basal cell that transports and an apical cell that responds to the signalling molecule auxin. This apical-basal auxin activity gradient triggers the specification of apical embryo structures and is actively maintained by a novel component of auxin efflux, PIN7, which is located apically in the basal cell. Later, the developmentally regulated reversal of PIN7 and onset of PIN1 polar localization reorganize the auxin gradient for specification of the basal root pole. An analysis of pin quadruple mutants identifies PIN-dependent transport as an essential part of the mechanism for embryo axis formation. Our results indicate how the establishment of cell polarity, polar auxin efflux and local auxin response result in apical-basal axis formation of the embryo, and thus determine the axiality of the adult plant.  相似文献   
18.
T J Jentsch  K Steinmeyer  G Schwarz 《Nature》1990,348(6301):510-514
A complementary DNA encoding a voltage-gated chloride channel from Torpedo marmorata electric organ was cloned by expressing hybrid-depleted messenger RNA in Xenopus oocytes. The predicted protein has a sequence of 805 amino acids containing several putative membrane-spanning domains. Expression of the protein in Xenopus oocytes shows that it is sufficient for channel function.  相似文献   
19.
Speciation in animals is almost always envisioned as the split of an existing lineage into an ancestral and a derived species. An alternative speciation route is homoploid hybrid speciation in which two ancestral taxa give rise to a third, derived, species by hybridization without a change in chromosome number. Although theoretically possible it has been regarded as rare and hence of little importance in animals. On the basis of molecular and chromosomal evidence, hybridization is the best explanation for the origin of a handful of extant diploid bisexual animal taxa. Here we report the first case in which hybridization between two host-specific animals (tephritid fruitflies) is clearly associated with the shift to a new resource. Such a hybrid host shift presents an ecologically robust scenario for animal hybrid speciation because it offers a potential mechanism for reproductive isolation through differential adaptation to a new ecological niche. The necessary conditions for this mechanism of speciation are common in parasitic animals, which represent much of animal diversity. The frequency of homoploid hybrid speciation in animals may therefore be higher than previously assumed.  相似文献   
20.
The molybdenum cofactor (Moco) forms the active site of all molybdenum (Mo) enzymes, except nitrogenase. Mo enzymes catalyze important redox reactions in global metabolic cycles. Moco consists of Mo covalently bound to one or two dithiolates attached to a unique tricyclic pterin moiety commonly referred to as molybdopterin (MPT). Moco is synthesized by an ancient and conserved biosynthetic pathway that can be divided into four steps, according to the biosynthetic intermediates precursor Z (cyclic pyranopterin monophosphate), MPT and adenylated MPT. In a fifth step modifications such as attachment of nucleotides, sulfuration or bond formation between Mo and the protein result in different catalytic Mo centers. A defect in any of the steps of Moco biosynthesis results in the pleiotropic loss of all Mo enzyme activities. Human Moco deficiency is a hereditary metabolic disorder characterized by severe neurodegeneration resulting in early childhood death. Recently, a first substitution therapy was established. Received 17 June 2005; received after revision 18 August 2005; accepted 1 September 2005  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号