首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   923篇
  免费   4篇
  国内免费   1篇
系统科学   3篇
理论与方法论   4篇
现状及发展   528篇
研究方法   85篇
综合类   307篇
自然研究   1篇
  2018年   11篇
  2017年   10篇
  2016年   9篇
  2014年   11篇
  2013年   11篇
  2012年   41篇
  2011年   40篇
  2010年   23篇
  2009年   12篇
  2008年   44篇
  2007年   43篇
  2006年   38篇
  2005年   38篇
  2004年   24篇
  2003年   28篇
  2002年   36篇
  2001年   25篇
  2000年   23篇
  1999年   11篇
  1994年   10篇
  1990年   7篇
  1989年   7篇
  1988年   8篇
  1986年   10篇
  1985年   12篇
  1984年   10篇
  1980年   10篇
  1979年   18篇
  1978年   12篇
  1977年   12篇
  1976年   14篇
  1975年   13篇
  1974年   13篇
  1973年   22篇
  1972年   10篇
  1971年   21篇
  1970年   16篇
  1969年   19篇
  1968年   11篇
  1967年   17篇
  1966年   22篇
  1965年   10篇
  1962年   8篇
  1961年   7篇
  1960年   8篇
  1957年   8篇
  1956年   7篇
  1955年   11篇
  1946年   7篇
  1945年   6篇
排序方式: 共有928条查询结果,搜索用时 218 毫秒
21.
Oxidative stress and enhanced lipid peroxidation are linked to many chronic inflammatory diseases, including age-related macular degeneration (AMD). AMD is the leading cause of blindness in Western societies, but its aetiology remains largely unknown. Malondialdehyde (MDA) is a common lipid peroxidation product that accumulates in many pathophysiological processes, including AMD. Here we identify complement factor H (CFH) as a major MDA-binding protein that can block both the uptake of MDA-modified proteins by macrophages and MDA-induced proinflammatory effects in vivo in mice. The CFH polymorphism H402, which is strongly associated with AMD, markedly reduces the ability of CFH to bind MDA, indicating a causal link to disease aetiology. Our findings provide important mechanistic insights into innate immune responses to oxidative stress, which may be exploited in the prevention of and therapy for AMD and other chronic inflammatory diseases.  相似文献   
22.
Shell structure and magic numbers in atomic nuclei were generally explained by pioneering work that introduced a strong spin-orbit interaction to the nuclear shell model potential. However, knowledge of nuclear forces and the mechanisms governing the structure of nuclei, in particular far from stability, is still incomplete. In nuclei with equal neutron and proton numbers (N = Z), enhanced correlations arise between neutrons and protons (two distinct types of fermions) that occupy orbitals with the same quantum numbers. Such correlations have been predicted to favour an unusual type of nuclear superfluidity, termed isoscalar neutron-proton pairing, in addition to normal isovector pairing. Despite many experimental efforts, these predictions have not been confirmed. Here we report the experimental observation of excited states in the N = Z = 46 nucleus (92)Pd. Gamma rays emitted following the (58)Ni((36)Ar,2n)(92)Pd fusion-evaporation reaction were identified using a combination of state-of-the-art high-resolution γ-ray, charged-particle and neutron detector systems. Our results reveal evidence for a spin-aligned, isoscalar neutron-proton coupling scheme, different from the previous prediction. We suggest that this coupling scheme replaces normal superfluidity (characterized by seniority coupling) in the ground and low-lying excited states of the heaviest N = Z nuclei. Such strong, isoscalar neutron-proton correlations would have a considerable impact on the nuclear level structure and possibly influence the dynamics of rapid proton capture in stellar nucleosynthesis.  相似文献   
23.
Centromere-binding protein B (CENP-B) is a widely conserved DNA binding factor associated with heterochromatin and centromeric satellite repeats. In fission yeast, CENP-B homologues have been shown to silence long terminal repeat (LTR) retrotransposons by recruiting histone deacetylases. However, CENP-B factors also have unexplained roles in DNA replication. Here we show that a molecular function of CENP-B is to promote replication-fork progression through the LTR. Mutants have increased genomic instability caused by replication-fork blockage that depends on the DNA binding factor switch-activating protein 1 (Sap1), which is directly recruited by the LTR. The loss of Sap1-dependent barrier activity allows the unhindered progression of the replication fork, but results in rearrangements deleterious to the retrotransposon. We conclude that retrotransposons influence replication polarity through recruitment of Sap1 and transposition near replication-fork blocks, whereas CENP-B counteracts this activity and promotes fork stability. Our results may account for the role of LTR in fragile sites, and for the association of CENP-B with pericentromeric heterochromatin and tandem satellite repeats.  相似文献   
24.
Copy number variation and selection during reprogramming to pluripotency   总被引:2,自引:0,他引:2  
The mechanisms underlying the low efficiency of reprogramming somatic cells into induced pluripotent stem (iPS) cells are poorly understood. There is a clear need to study whether the reprogramming process itself compromises genomic integrity and, through this, the efficiency of iPS cell establishment. Using a high-resolution single nucleotide polymorphism array, we compared copy number variations (CNVs) of different passages of human iPS cells with their fibroblast cell origins and with human embryonic stem (ES) cells. Here we show that significantly more CNVs are present in early-passage human iPS cells than intermediate passage human iPS cells, fibroblasts or human ES cells. Most CNVs are formed de novo and generate genetic mosaicism in early-passage human iPS cells. Most of these novel CNVs rendered the affected cells at a selective disadvantage. Remarkably, expansion of human iPS cells in culture selects rapidly against mutated cells, driving the lines towards a genetic state resembling human ES cells.  相似文献   
25.
Genome-wide association studies (GWAS) have identified many risk loci for complex diseases, but effect sizes are typically small and information on the underlying biological processes is often lacking. Associations with metabolic traits as functional intermediates can overcome these problems and potentially inform individualized therapy. Here we report a comprehensive analysis of genotype-dependent metabolic phenotypes using a GWAS with non-targeted metabolomics. We identified 37 genetic loci associated with blood metabolite concentrations, of which 25 show effect sizes that are unusually high for GWAS and account for 10-60% differences in metabolite levels per allele copy. Our associations provide new functional insights for many disease-related associations that have been reported in previous studies, including those for cardiovascular and kidney disorders, type 2 diabetes, cancer, gout, venous thromboembolism and Crohn's disease. The study advances our knowledge of the genetic basis of metabolic individuality in humans and generates many new hypotheses for biomedical and pharmaceutical research.  相似文献   
26.
Celiac disease is characterized by the presence of specific autoantibodies targeted against transglutaminase 2 (TG2) in untreated patients’ serum and at their production site in the small-bowel mucosa below the basement membrane and around the blood vessels. As these autoantibodies have biological activity in vitro, such as inhibition of angiogenesis, we studied if they might also modulate the endothelial barrier function. Our results show that celiac disease patient autoantibodies increase endothelial permeability for macromolecules, and enhance the binding of lymphocytes to the endothelium and their transendothelial migration when compared to control antibodies in an endothelial cell-based in vitro model. We also demonstrate that these effects are mediated by increased activities of TG2 and RhoA. Since the small bowel mucosal endothelium serves as a “gatekeeper” in inflammatory processes, the disease-specific autoantibodies targeted against TG2 could thus contribute to the pathogenic cascade of celiac disease by increasing blood vessel permeability.  相似文献   
27.
28.
Apolipoprotein M (apoM) is a novel apolipoprotein found mainly in high-density lipoproteins (HDL). Its function is yet to be defined. ApoM (25 kDa) has a typical lipocalin ?-barrel fold and a hydrophobic pocket. Retinoids bind apoM but with low affinity and may not be the natural ligands. ApoM retains its signal peptide, which serves as a hydrophobic anchor to the lipoproteins. This prevents apoM from being lost in the urine. Approximately 5% of HDL carries an apoM molecule. ApoM in plasma (1 μM) correlates strongly with both low-density lipoprotein (LDL) and HDL cholesterol, suggesting a link to cholesterol metabolism. However, in casecontrol studies, apoM levels in patients with coronary heart disease (CHD) and controls were similar, suggesting apoM levels not to affect the risk for CHD in humans. Experiments in transgenic mice suggested apoM to have antiatherogenic properties; possible mechanisms include increased formation of pre-? HDL, enhanced cholesterol mobilization from foam cells, and increased antioxidant properties. Received 28 November 2008; received after revision 15 December 2008; accepted 16 December 2008  相似文献   
29.
To identify susceptibility loci for meningioma, we conducted a genome-wide association study of 859 affected individuals (cases) and 704 controls with validation in two independent sample sets totaling 774 cases and 1,764 controls. We identified a new susceptibility locus for meningioma at 10p12.31 (MLLT10, rs11012732, odds ratio = 1.46, P(combined) = 1.88 × 10(-14)). This finding advances our understanding of the genetic basis of meningioma development.  相似文献   
30.
Cilia are essential for fertilization, respiratory clearance, cerebrospinal fluid circulation and establishing laterality. Cilia motility defects cause primary ciliary dyskinesia (PCD, MIM244400), a disorder affecting 1:15,000-30,000 births. Cilia motility requires the assembly of multisubunit dynein arms that drive ciliary bending. Despite progress in understanding the genetic basis of PCD, mutations remain to be identified for several PCD-linked loci. Here we show that the zebrafish cilia paralysis mutant schmalhans (smh(tn222)) encodes the coiled-coil domain containing 103 protein (Ccdc103), a foxj1a-regulated gene product. Screening 146 unrelated PCD families identified individuals in six families with reduced outer dynein arms who carried mutations in CCDC103. Dynein arm assembly in smh mutant zebrafish was rescued by wild-type but not mutant human CCDC103. Chlamydomonas Ccdc103/Pr46b functions as a tightly bound, axoneme-associated protein. These results identify Ccdc103 as a dynein arm attachment factor that causes primary ciliary dyskinesia when mutated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号