首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   295篇
  免费   0篇
  国内免费   5篇
教育与普及   1篇
理论与方法论   5篇
现状及发展   35篇
研究方法   48篇
综合类   202篇
自然研究   9篇
  2019年   1篇
  2018年   2篇
  2017年   2篇
  2016年   5篇
  2015年   1篇
  2014年   3篇
  2013年   6篇
  2012年   23篇
  2011年   41篇
  2010年   5篇
  2009年   2篇
  2008年   23篇
  2007年   19篇
  2006年   26篇
  2005年   34篇
  2004年   23篇
  2003年   27篇
  2002年   18篇
  2001年   1篇
  1999年   2篇
  1993年   2篇
  1992年   1篇
  1990年   3篇
  1989年   1篇
  1987年   3篇
  1986年   3篇
  1984年   3篇
  1983年   1篇
  1982年   3篇
  1981年   2篇
  1980年   1篇
  1974年   2篇
  1972年   2篇
  1971年   2篇
  1970年   1篇
  1969年   2篇
  1968年   1篇
  1965年   1篇
  1963年   1篇
  1961年   1篇
排序方式: 共有300条查询结果,搜索用时 62 毫秒
31.
The genome sequence of the filamentous fungus Neurospora crassa   总被引:1,自引:0,他引:1  
Neurospora crassa is a central organism in the history of twentieth-century genetics, biochemistry and molecular biology. Here, we report a high-quality draft sequence of the N. crassa genome. The approximately 40-megabase genome encodes about 10,000 protein-coding genes--more than twice as many as in the fission yeast Schizosaccharomyces pombe and only about 25% fewer than in the fruitfly Drosophila melanogaster. Analysis of the gene set yields insights into unexpected aspects of Neurospora biology including the identification of genes potentially associated with red light photobiology, genes implicated in secondary metabolism, and important differences in Ca2+ signalling as compared with plants and animals. Neurospora possesses the widest array of genome defence mechanisms known for any eukaryotic organism, including a process unique to fungi called repeat-induced point mutation (RIP). Genome analysis suggests that RIP has had a profound impact on genome evolution, greatly slowing the creation of new genes through genomic duplication and resulting in a genome with an unusually low proportion of closely related genes.  相似文献   
32.
Hermansky-Pudlak syndrome (HPS) is a genetically heterogeneous disease involving abnormalities of melanosomes, platelet dense granules and lysosomes. Here we have used positional candidate and transgenic rescue approaches to identify the genes mutated in ruby-eye 2 and ruby-eye mice (ru2 and ru, respectively), two 'mimic' mouse models of HPS. We also show that these genes are orthologs of the genes mutated in individuals with HPS types 5 and 6, respectively, and that their protein products directly interact. Both genes are previously unknown and are found only in higher eukaryotes, and together represent a new class of genes that have evolved in higher organisms to govern the synthesis of highly specialized lysosome-related organelles.  相似文献   
33.
Several proteins implicated in the pathogenesis of polycystic kidney disease (PKD) localize to cilia. Furthermore, cilia are malformed in mice with PKD with mutations in TgN737Rpw (encoding polaris). It is not known, however, whether ciliary dysfunction occurs or is relevant to cyst formation in PKD. Here, we show that polycystin-1 (PC1) and polycystin-2 (PC2), proteins respectively encoded by Pkd1 and Pkd2, mouse orthologs of genes mutated in human autosomal dominant PKD, co-distribute in the primary cilia of kidney epithelium. Cells isolated from transgenic mice that lack functional PC1 formed cilia but did not increase Ca(2+) influx in response to physiological fluid flow. Blocking antibodies directed against PC2 similarly abolished the flow response in wild-type cells as did inhibitors of the ryanodine receptor, whereas inhibitors of G-proteins, phospholipase C and InsP(3) receptors had no effect. These data suggest that PC1 and PC2 contribute to fluid-flow sensation by the primary cilium in renal epithelium and that they both function in the same mechanotransduction pathway. Loss or dysfunction of PC1 or PC2 may therefore lead to PKD owing to the inability of cells to sense mechanical cues that normally regulate tissue morphogenesis.  相似文献   
34.
Zhong W  Feng H  Santiago FE  Kipreos ET 《Nature》2003,423(6942):885-889
To maintain genome stability, DNA replication is strictly regulated to occur only once per cell cycle. In eukaryotes, the presence of 'licensing proteins' at replication origins during the G1 cell-cycle phase allows the formation of the pre-replicative complex. The removal of licensing proteins from chromatin during the S phase ensures that origins fire only once per cell cycle. Here we show that the CUL-4 ubiquitin ligase temporally restricts DNA-replication licensing in Caenorhabditis elegans. Inactivation of CUL-4 causes massive DNA re-replication, producing cells with up to 100C DNA content. The C. elegans orthologue of the replication-licensing factor Cdt1 (refs 2, 3) is required for DNA replication. C. elegans CDT-1 is present in G1-phase nuclei but disappears as cells enter S phase. In cells lacking CUL-4, CDT-1 levels fail to decrease during S phase and instead remain constant in the re-replicating cells. Removal of one genomic copy of cdt-1 suppresses the cul-4 re-replication phenotype. We propose that CUL-4 prevents aberrant re-initiation of DNA replication, at least in part, by facilitating the degradation of CDT-1.  相似文献   
35.
36.
随着世界人口的增长和淡水资源的日趋珍贵,研究人员正把眼光投向大海,他们要用海水浇灌某些经挑选的植物。当前全球最紧迫的问题之一就是要找到足够的水和土地来满足全球性食品需求。据联合国粮农组织估计,在今后的30年内需要20亿公顷(约合49.42亿英亩)的新耕地─—面积相当于亚利桑那、新墨西哥、犹他、科罗拉多、爱达荷、怀俄明以及蒙大拿诸州的总和──才能满足热带和亚热带地区迅速增长的人口的食品需求、可是在这些地带的国家中可供农业拓展的土地只有9亿3千万公顷──而且其中很大一部分被森林覆盖,是应保护之地。显然,我们需…  相似文献   
37.
38.
Maize HapMap2 identifies extant variation from a genome in flux   总被引:3,自引:0,他引:3  
Whereas breeders have exploited diversity in maize for yield improvements, there has been limited progress in using beneficial alleles in undomesticated varieties. Characterizing standing variation in this complex genome has been challenging, with only a small fraction of it described to date. Using a population genetics scoring model, we identified 55 million SNPs in 103 lines across pre-domestication and domesticated Zea mays varieties, including a representative from the sister genus Tripsacum. We find that structural variations are pervasive in the Z. mays genome and are enriched at loci associated with important traits. By investigating the drivers of genome size variation, we find that the larger Tripsacum genome can be explained by transposable element abundance rather than an allopolyploid origin. In contrast, intraspecies genome size variation seems to be controlled by chromosomal knob content. There is tremendous overlap in key gene content in maize and Tripsacum, suggesting that adaptations from Tripsacum (for example, perennialism and frost and drought tolerance) can likely be integrated into maize.  相似文献   
39.
During electron transport, the mitochondrion generates ATP and reactive oxygen species (ROS), a group of partially reduced and highly reactive metabolites of oxygen. In this in vivo genetic analysis in Drosophila melanogaster, we establish that disruption of complex I of the mitochondrial electron transport chain specifically retards the cell cycle during the G1-S transition. The mechanism involves a specific signaling cascade initiated by ROS and transduced by ASK-1, JNK, FOXO and the Drosophila p27 homolog, Dacapo. On the basis of our data combined with previous analyses of the system, we conclude that mitochondrial dysfunction activates at least two retrograde signals to specifically enforce a G1-S cell cycle checkpoint. One such signal involves an increase in AMP production and downregulation of cyclin E protein; another independent pathway involves increased ROS and upregulation of Dacapo. Thus, our results indicate that the mitochondrion can use AMP and ROS at sublethal concentrations as independent signaling molecules to modulate cell cycle progression.  相似文献   
40.
Recent advances in understanding the cellular and molecular basis of psychiatric illnesses have shed light on the important role played by trophic factors in modulating functional parameters associated with disease causality and drug action. Disease mechanisms are now thought to involve multiple cell types, including neurons and endothelial cells. These functionally distinct but interactively coupled cell types engage in cellular cross talk via shared and common signaling molecules. Dysregulation in their cellular signaling pathways influences brain function and alters behavioral performance. Multifunctional trophic factors such as VEGF and EPO that possess both neurotrophic and angiogenic actions are of particular interest due to their ability to rescue structural and plasticity deficits in neurons and vasculature. Obtaining insight into the behavioral, cellular and molecular actions of multi-functional trophic factors has the potential to open new and transformative therapeutic approaches.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号