首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   0篇
理论与方法论   2篇
现状及发展   9篇
综合类   9篇
  2016年   1篇
  2013年   4篇
  2011年   1篇
  2008年   2篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  1998年   1篇
  1984年   1篇
  1978年   1篇
  1974年   1篇
  1972年   2篇
  1971年   1篇
  1968年   1篇
  1966年   1篇
排序方式: 共有20条查询结果,搜索用时 287 毫秒
11.
Molecular insights into the novel aspects of diatom biology   总被引:1,自引:0,他引:1  
Diatoms are unicellular photosynthetic eukaryotes that are thought to contribute as much as 25% of global primary productivity. In spite of their ecological importance in the worlds oceans, very little information is available at the molecular level about the novel aspects of their biology. Recent advances, such as the development of gene transfer protocols, are now allowing the genetic dissection of diatom biology. Notable examples are advances in understanding the genetic basis for the silica-based bioinorganic pattern formation of their cell walls and for elucidating key aspects of diatom ecophysiology. The potentiation of current research will allow an evaluation of the use of diatoms to construct submicrometre-scale silicon structures for the nanotechnology industry and will reveal the molecular secrets underlying their ecological success. Received 29 March 2001; received after revision 31 May 2001; accepted 31 May 2001  相似文献   
12.
Diatoms dominate the biomass of phytoplankton in nutrient-rich conditions and form the basis of some of the world's most productive marine food webs. The diatom nuclear genome contains genes with bacterial and plastid origins as well as genes of the secondary endosymbiotic host (the exosymbiont), yet little is known about the relative contribution of each gene group to diatom metabolism. Here we show that the exosymbiont-derived ornithine-urea cycle, which is similar to that of metazoans but is absent in green algae and plants, facilitates rapid recovery from prolonged nitrogen limitation. RNA-interference-mediated knockdown of a mitochondrial carbamoyl phosphate synthase impairs the response of nitrogen-limited diatoms to nitrogen addition. Metabolomic analyses indicate that intermediates in the ornithine-urea cycle are particularly depleted and that both the tricarboxylic acid cycle and the glutamine synthetase/glutamate synthase cycles are linked directly with the ornithine-urea cycle. Several other depleted metabolites are generated from ornithine-urea cycle intermediates by the products of genes laterally acquired from bacteria. This metabolic coupling of bacterial- and exosymbiont-derived proteins seems to be fundamental to diatom physiology because the compounds affected include the major diatom osmolyte proline and the precursors for long-chain polyamines required for silica precipitation during cell wall formation. So far, the ornithine-urea cycle is only known for its essential role in the removal of fixed nitrogen in metazoans. In diatoms, this cycle serves as a distribution and repackaging hub for inorganic carbon and nitrogen and contributes significantly to the metabolic response of diatoms to episodic nitrogen availability. The diatom ornithine-urea cycle therefore represents a key pathway for anaplerotic carbon fixation into nitrogenous compounds that are essential for diatom growth and for the contribution of diatoms to marine productivity.  相似文献   
13.
14.
Zusammenfassung Die Präsenz einer charakteristischen Na+–K+-aktivierbaren ATPase (E.C. 3.6.1.3) wurde erstmals in einer mikrosomalen Fraktion des Enddarmes und der malpighischen Gefässe bei der WüstenschreckeScistocerca gregaria und der LaubheuschreckeJamaicana flava nachgewiesen.  相似文献   
15.
16.
Biodegradation of crude oil in subsurface petroleum reservoirs has adversely affected the majority of the world's oil, making recovery and refining of that oil more costly. The prevalent occurrence of biodegradation in shallow subsurface petroleum reservoirs has been attributed to aerobic bacterial hydrocarbon degradation stimulated by surface recharge of oxygen-bearing meteoric waters. This hypothesis is empirically supported by the likelihood of encountering biodegraded oils at higher levels of degradation in reservoirs near the surface. More recent findings, however, suggest that anaerobic degradation processes dominate subsurface sedimentary environments, despite slow reaction kinetics and uncertainty as to the actual degradation pathways occurring in oil reservoirs. Here we use laboratory experiments in microcosms monitoring the hydrocarbon composition of degraded oils and generated gases, together with the carbon isotopic compositions of gas and oil samples taken at wellheads and a Rayleigh isotope fractionation box model, to elucidate the probable mechanisms of hydrocarbon degradation in reservoirs. We find that crude-oil hydrocarbon degradation under methanogenic conditions in the laboratory mimics the characteristic sequential removal of compound classes seen in reservoir-degraded petroleum. The initial preferential removal of n-alkanes generates close to stoichiometric amounts of methane, principally by hydrogenotrophic methanogenesis. Our data imply a common methanogenic biodegradation mechanism in subsurface degraded oil reservoirs, resulting in consistent patterns of hydrocarbon alteration, and the common association of dry gas with severely degraded oils observed worldwide. Energy recovery from oilfields in the form of methane, based on accelerating natural methanogenic biodegradation, may offer a route to economic production of difficult-to-recover energy from oilfields.  相似文献   
17.
18.
New ages for human occupation and climatic change at Lake Mungo,Australia   总被引:11,自引:0,他引:11  
Australia's oldest human remains, found at Lake Mungo, include the world's oldest ritual ochre burial (Mungo III) and the first recorded cremation (Mungo I). Until now, the importance of these finds has been constrained by limited chronologies and palaeoenvironmental information. Mungo III, the source of the world's oldest human mitochondrial DNA, has been variously estimated at 30 thousand years (kyr) old, 42-45 kyr old and 62 +/- 6 kyr old, while radiocarbon estimates placed the Mungo I cremation near 20-26 kyr ago. Here we report a new series of 25 optical ages showing that both burials occurred at 40 +/- 2 kyr ago and that humans were present at Lake Mungo by 50-46 kyr ago, synchronously with, or soon after, initial occupation of northern and western Australia. Stratigraphic evidence indicates fluctuations between lake-full and drier conditions from 50 to 40 kyr ago, simultaneously with increased dust deposition, human arrival and continent-wide extinction of the megafauna. This was followed by sustained aridity between 40 and 30 kyr ago. This new chronology corrects previous estimates for human burials at this important site and provides a new picture of Homo sapiens adapting to deteriorating climate in the world's driest inhabited continent.  相似文献   
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号