首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   107篇
  免费   2篇
系统科学   1篇
现状及发展   24篇
研究方法   33篇
综合类   47篇
自然研究   4篇
  2021年   1篇
  2018年   4篇
  2017年   4篇
  2016年   5篇
  2015年   6篇
  2014年   2篇
  2013年   1篇
  2012年   9篇
  2011年   11篇
  2010年   3篇
  2009年   1篇
  2008年   14篇
  2007年   10篇
  2006年   10篇
  2005年   8篇
  2004年   3篇
  2003年   7篇
  2002年   5篇
  1997年   1篇
  1991年   2篇
  1972年   1篇
  1965年   1篇
排序方式: 共有109条查询结果,搜索用时 16 毫秒
41.
One important aspect concerning the analysis and forecasting of time series that is sometimes neglected is the relationship between a model and the sampling interval, in particular, when the observation is cumulative over the sampling period. This paper intends to study the temporal aggregation in Bayesian dynamic linear models (DLM). Suppose that a time series Yt is observed at time units t and the observations of the process are aggregated over r units of time, defining a new time series Zkri=1Yrk+i. The relevant factors explaining the variation of Zk can, and in general will, be different, depending on how the sampling interval r is chosen. It is shown that if Yt follows certain dynamic linear models, then the aggregated series can also be described by possibly different DLM. In the examples, the industrial production of Brazil is analysed under various aggregation periods and the results are compared. © 1997 John Wiley & Sons, Ltd.  相似文献   
42.
43.
44.
45.
Type I iodothyronine deiodinase is a selenocysteine-containing enzyme.   总被引:36,自引:0,他引:36  
M J Berry  L Banu  P R Larsen 《Nature》1991,349(6308):438-440
Although thyroxine (3,5,3',5'-tetraiodothyronine, T4) is the principal secretory product of the vertebrate thyroid, its essential metabolic and developmental effects are all mediated by 3,5,3'-triiodothyronine (T3), which is produced from the prohormone by 5'-deiodination. The type-I iodothyronine deiodinase, a thiol-requiring propylthiouracil-sensitive oxidoreductase, is found mainly in liver and kidney and provides most of the circulating T3(1) but so far this enzyme has not been purified. Using expression cloning in the Xenopus oocyte, we have isolated a 2.1-kilobase complementary DNA for this deiodinase from a rat liver cDNA library. The kinetic properties of the protein expressed in transient assay systems, the tissue distribution of the messenger RNA, and its changes with thyroid status, all confirm its identity. We find that the mRNA for this enzyme contains a UGA codon for selenocysteine which is necessary for maximal enzyme activity. This explains why conversion of T4 to T3 is impaired in experimental selenium deficiency and identifies an essential role for this trace element in thyroid hormone action.  相似文献   
46.
Witze A 《Nature》2008,455(7212):442-445
  相似文献   
47.
48.
Cells respond to internal and external cellular stressors by activating stress-response pathways that re-establish homeostasis. If homeostasis is not achieved in a timely manner, stress pathways trigger programmed cell death (apoptosis) to preserve organism integrity. A highly conserved stress pathway is the unfolded protein response (UPR), which senses excessive amounts of unfolded proteins in the ER. While a physiologically beneficial pathway, the UPR requires tight regulation to provide a beneficial outcome and avoid deleterious consequences. Recent work has demonstrated that a conserved and highly selective RNA degradation pathway—nonsense-mediated RNA decay (NMD)—serves as a major regulator of the UPR pathway. NMD degrades mRNAs encoding UPR components to prevent UPR activation in response to innocuous ER stress. In response to strong ER stress, NMD is inhibited by the UPR to allow for a full-magnitude UPR response. Recent studies have indicated that NMD also has other stress-related functions, including promoting the timely termination of the UPR to avoid apoptosis; NMD also regulates responses to non-ER stressors, including hypoxia, amino-acid deprivation, and pathogen infection. NMD regulates stress responses in species across the phylogenetic scale, suggesting that it has conserved roles in shaping stress responses. Stress pathways are frequently constitutively activated or dysregulated in human disease, raising the possibility that “NMD therapy” may provide clinical benefit by downmodulating stress responses.  相似文献   
49.
Growing evidence supports the hypothesis that narcolepsy with cataplexy is an autoimmune disease. We here report genome-wide association analyses for narcolepsy with replication and fine mapping across three ethnic groups (3,406 individuals of European ancestry, 2,414 Asians and 302 African Americans). We identify a SNP in the 3' untranslated region of P2RY11, the purinergic receptor subtype P2Y?? gene, which is associated with narcolepsy (rs2305795, combined P = 6.1 × 10?1?, odds ratio = 1.28, 95% CI 1.19-1.39, n = 5689). The disease-associated allele is correlated with reduced expression of P2RY11 in CD8(+) T lymphocytes (339% reduced, P = 0.003) and natural killer (NK) cells (P = 0.031), but not in other peripheral blood mononuclear cell types. The low expression variant is also associated with reduced P2RY11-mediated resistance to ATP-induced cell death in T lymphocytes (P = 0.0007) and natural killer cells (P = 0.001). These results identify P2RY11 as an important regulator of immune-cell survival, with possible implications in narcolepsy and other autoimmune diseases.  相似文献   
50.
We previously identified Nob1 as a quantitative trait locus for high-fat diet-induced obesity and diabetes in genome-wide scans of outcross populations of obese and lean mouse strains. Additional crossbreeding experiments indicated that Nob1 represents an obesity suppressor from the lean Swiss Jim Lambert (SJL) strain. Here we identify a SJL-specific mutation in the Tbc1d1 gene that results in a truncated protein lacking the TBC Rab-GTPase-activating protein domain. TBC1D1, which has been recently linked to human obesity, is related to the insulin signaling protein AS160 and is predominantly expressed in skeletal muscle. Knockdown of TBC1D1 in skeletal muscle cells increased fatty acid uptake and oxidation, whereas overexpression of TBC1D1 had the opposite effect. Recombinant congenic mice lacking TBC1D1 showed reduced body weight, decreased respiratory quotient, increased fatty acid oxidation and reduced glucose uptake in isolated skeletal muscle. Our data strongly suggest that mutation of Tbc1d1 suppresses high-fat diet-induced obesity by increasing lipid use in skeletal muscle.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号