首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5123篇
  免费   18篇
  国内免费   22篇
系统科学   15篇
丛书文集   18篇
教育与普及   7篇
理论与方法论   3篇
现状及发展   2225篇
研究方法   269篇
综合类   2596篇
自然研究   30篇
  2013年   54篇
  2012年   106篇
  2011年   129篇
  2010年   28篇
  2008年   92篇
  2007年   117篇
  2006年   103篇
  2005年   103篇
  2004年   126篇
  2003年   86篇
  2002年   97篇
  2001年   181篇
  2000年   151篇
  1999年   122篇
  1992年   112篇
  1991年   72篇
  1990年   76篇
  1989年   67篇
  1988年   73篇
  1987年   78篇
  1986年   56篇
  1985年   96篇
  1984年   91篇
  1983年   79篇
  1982年   62篇
  1981年   54篇
  1980年   69篇
  1979年   174篇
  1978年   141篇
  1977年   111篇
  1976年   117篇
  1975年   123篇
  1974年   147篇
  1973年   119篇
  1972年   124篇
  1971年   149篇
  1970年   197篇
  1969年   142篇
  1968年   152篇
  1967年   127篇
  1966年   137篇
  1965年   104篇
  1964年   39篇
  1959年   39篇
  1958年   68篇
  1957年   47篇
  1956年   38篇
  1955年   36篇
  1954年   46篇
  1948年   28篇
排序方式: 共有5163条查询结果,搜索用时 31 毫秒
991.
Gamma-ray bursts (GRBs) are short, intense flashes of soft gamma-rays coming from the distant Universe. Long-duration GRBs (those lasting more than approximately 2 s) are believed to originate from the deaths of massive stars, mainly on the basis of a handful of solid associations between GRBs and supernovae. GRB 060614, one of the closest GRBs discovered, consisted of a 5-s hard spike followed by softer, brighter emission that lasted for approximately 100 s (refs 8, 9). Here we report deep optical observations of GRB 060614 showing no emerging supernova with absolute visual magnitude brighter than M(V) = -13.7. Any supernova associated with GRB 060614 was therefore at least 100 times fainter, at optical wavelengths, than the other supernovae associated with GRBs. This demonstrates that some long-lasting GRBs can either be associated with a very faint supernova or produced by different phenomena.  相似文献   
992.
Belevich I  Verkhovsky MI  Wikström M 《Nature》2006,440(7085):829-832
Electron transfer in cell respiration is coupled to proton translocation across mitochondrial and bacterial membranes, which is a primary event of biological energy transduction. The resulting electrochemical proton gradient is used to power energy-requiring reactions, such as ATP synthesis. Cytochrome c oxidase is a key component of the respiratory chain, which harnesses dioxygen as a sink for electrons and links O2 reduction to proton pumping. Electrons from cytochrome c are transferred sequentially to the O2 reduction site of cytochrome c oxidase via two other metal centres, Cu(A) and haem a, and this is coupled to vectorial proton transfer across the membrane by a hitherto unknown mechanism. On the basis of the kinetics of proton uptake and release on the two aqueous sides of the membrane, it was recently suggested that proton pumping by cytochrome c oxidase is not mechanistically coupled to internal electron transfer. Here we have monitored translocation of electrical charge equivalents as well as electron transfer within cytochrome c oxidase in real time. The results show that electron transfer from haem a to the O2 reduction site initiates the proton pump mechanism by being kinetically linked to an internal vectorial proton transfer. This reaction drives the proton pump and occurs before relaxation steps in which protons are taken up from the aqueous space on one side of the membrane and released on the other.  相似文献   
993.
Winkowski DE  Knudsen EI 《Nature》2006,439(7074):336-339
High-level circuits in the brain that control the direction of gaze are intimately linked with the control of visual spatial attention. Immediately before an animal directs its gaze towards a stimulus, both psychophysical sensitivity to that visual stimulus and the responsiveness of high-order neurons in the cerebral cortex that represent the stimulus increase dramatically. Equivalent effects on behavioural sensitivity and neuronal responsiveness to visual stimuli result from focal electrical microstimulation of gaze control centres in monkeys. Whether the gaze control system modulates neuronal responsiveness in sensory modalities other than vision is unknown. Here we show that electrical microstimulation applied to gaze control circuitry in the forebrain of barn owls regulates the gain of midbrain auditory responses in an attention-like manner. When the forebrain circuit was activated, midbrain responses to auditory stimuli at the location encoded by the forebrain site were enhanced and spatial selectivity was sharpened. The same stimulation suppressed responses to auditory stimuli represented at other locations in the midbrain map. Such space-specific, top-down regulation of auditory responses by gaze control circuitry in the barn owl suggests that the central nervous system uses a common strategy for dynamically regulating sensory gain that applies across modalities, brain areas and classes of vertebrate species. This approach provides a path for discovering mechanisms that underlie top-down gain control in the central nervous system.  相似文献   
994.
Ramsey IS  Moran MM  Chong JA  Clapham DE 《Nature》2006,440(7088):1213-1216
Voltage changes across the cell membrane control the gating of many cation-selective ion channels. Conserved from bacteria to humans, the voltage-gated-ligand superfamily of ion channels are encoded as polypeptide chains of six transmembrane-spanning segments (S1-S6). S1-S4 functions as a self-contained voltage-sensing domain (VSD), in essence a positively charged lever that moves in response to voltage changes. The VSD 'ligand' transmits force via a linker to the S5-S6 pore domain 'receptor', thereby opening or closing the channel. The ascidian VSD protein Ci-VSP gates a phosphatase activity rather than a channel pore, indicating that VSDs function independently of ion channels. Here we describe a mammalian VSD protein (H(V)1) that lacks a discernible pore domain but is sufficient for expression of a voltage-sensitive proton-selective ion channel activity. H(v)1 currents are activated at depolarizing voltages, sensitive to the transmembrane pH gradient, H+-selective, and Zn2+-sensitive. Mutagenesis of H(v)1 identified three arginine residues in S4 that regulate channel gating and two histidine residues that are required for extracellular inhibition of H(v)1 by Zn2+. H(v)1 is expressed in immune tissues and manifests the characteristic properties of native proton conductances (G(vH+)). In phagocytic leukocytes, G(vH+) are required to support the oxidative burst that underlies microbial killing by the innate immune system. The data presented here identify H(v)1 as a long-sought voltage-gated H+ channel and establish H(v)1 as the founding member of a family of mammalian VSD proteins.  相似文献   
995.
Schultz PH  Staid MI  Pieters CM 《Nature》2006,444(7116):184-186
Samples of material returned from the Moon have established that widespread lunar volcanism ceased about 3.2 Gyr ago. Crater statistics and degradation models indicate that last-gasp eruptions of thin basalt flows continued until less than 1.0 Gyr ago, but the Moon is now considered to be unaffected by internal processes today, other than weak tidally driven moonquakes and young fault systems. It is therefore widely assumed that only impact craters have reshaped the lunar landscape over the past billion years. Here we report that patches of the lunar regolith in the Ina structure were recently removed. The preservation state of relief, the number of superimposed small craters, and the 'freshness' (spectral maturity) of the regolith together indicate that features within this structure must be as young as 10 Myr, and perhaps are still forming today. We propose that these features result from recent, episodic out-gassing from deep within the Moon. Such out-gassing probably contributed to the radiogenic gases detected during past lunar missions. Future monitoring (including Earth-based observations) should reveal the composition of the gas, yielding important clues to volatiles archived at great depth over the past 4-4.5 Gyr.  相似文献   
996.
997.
Bites and stings from venomous creatures can produce pain and inflammation as part of their defensive strategy to ward off predators or competitors. Molecules accounting for lethal effects of venoms have been extensively characterized, but less is known about the mechanisms by which they produce pain. Venoms from spiders, snakes, cone snails or scorpions contain a pharmacopoeia of peptide toxins that block receptor or channel activation as a means of producing shock, paralysis or death. We examined whether these venoms also contain toxins that activate (rather than inhibit) excitatory channels on somatosensory neurons to produce a noxious sensation in mammals. Here we show that venom from a tarantula that is native to the West Indies contains three inhibitor cysteine knot (ICK) peptides that target the capsaicin receptor (TRPV1), an excitatory channel expressed by sensory neurons of the pain pathway. In contrast with the predominant role of ICK toxins as channel inhibitors, these previously unknown 'vanillotoxins' function as TRPV1 agonists, providing new tools for understanding mechanisms of TRP channel gating. Some vanillotoxins also inhibit voltage-gated potassium channels, supporting potential similarities between TRP and voltage-gated channel structures. TRP channels can now be included among the targets of peptide toxins, showing that animals, like plants (for example, chilli peppers), avert predators by activating TRP channels on sensory nerve fibres to elicit pain and inflammation.  相似文献   
998.
Tobie G  Lunine JI  Sotin C 《Nature》2006,440(7080):61-64
Saturn's largest satellite, Titan, has a massive nitrogen atmosphere containing up to 5 per cent methane near its surface. Photochemistry in the stratosphere would remove the present-day atmospheric methane in a few tens of millions of years. Before the Cassini-Huygens mission arrived at Saturn, widespread liquid methane or mixed hydrocarbon seas hundreds of metres in thickness were proposed as reservoirs from which methane could be resupplied to the atmosphere over geologic time. Titan fly-by observations and ground-based observations rule out the presence of extensive bodies of liquid hydrocarbons at present, which means that methane must be derived from another source over Titan's history. Here we show that episodic outgassing of methane stored as clathrate hydrates within an icy shell above an ammonia-enriched water ocean is the most likely explanation for Titan's atmospheric methane. The other possible explanations all fail because they cannot explain the absence of surface liquid reservoirs and/or the low dissipative state of the interior. On the basis of our models, we predict that future fly-bys should reveal the existence of both a subsurface water ocean and a rocky core, and should detect more cryovolcanic edifices.  相似文献   
999.
The Southern Ocean biogeochemical divide   总被引:1,自引:0,他引:1  
Modelling studies have demonstrated that the nutrient and carbon cycles in the Southern Ocean play a central role in setting the air-sea balance of CO(2) and global biological production. Box model studies first pointed out that an increase in nutrient utilization in the high latitudes results in a strong decrease in the atmospheric carbon dioxide partial pressure (pCO2). This early research led to two important ideas: high latitude regions are more important in determining atmospheric pCO2 than low latitudes, despite their much smaller area, and nutrient utilization and atmospheric pCO2 are tightly linked. Subsequent general circulation model simulations show that the Southern Ocean is the most important high latitude region in controlling pre-industrial atmospheric CO(2) because it serves as a lid to a larger volume of the deep ocean. Other studies point out the crucial role of the Southern Ocean in the uptake and storage of anthropogenic carbon dioxide and in controlling global biological production. Here we probe the system to determine whether certain regions of the Southern Ocean are more critical than others for air-sea CO(2) balance and the biological export production, by increasing surface nutrient drawdown in an ocean general circulation model. We demonstrate that atmospheric CO(2) and global biological export production are controlled by different regions of the Southern Ocean. The air-sea balance of carbon dioxide is controlled mainly by the biological pump and circulation in the Antarctic deep-water formation region, whereas global export production is controlled mainly by the biological pump and circulation in the Subantarctic intermediate and mode water formation region. The existence of this biogeochemical divide separating the Antarctic from the Subantarctic suggests that it may be possible for climate change or human intervention to modify one of these without greatly altering the other.  相似文献   
1000.
无公害工业化生产要求制革企业放弃制革工艺中沿用的传统有害物质,采用新方法生产高质量皮革制品。介绍了中俄科研人员用两种不同的方法(涂布法、浸酶法)和两种不同的脱毛酶制剂进行的生皮脱毛试验。试验证明,用酶制剂脱毛效果良好,完全可以替代传统的硫化碱,同时能够改善制革工艺,削弱碱性物质对皮革表面的侵害,减少制革业对水源污染。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号