首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper analyzes the experiment presented in 2019 by the Event Horizon Telescope (EHT) Collaboration that unveiled the first image of the supermassive black hole at the center of galaxy M87. The intended aim of the paper is to assess whether the EHT Collaboration has made an “inference to the best explanation” (IBE) to conclude that the data effectively confirm the hypothesis that the object at the center of M87 is in fact a supermassive Kerr rotating black hole. I demonstrate that the EHT Collaboration has applied an IBE. It is shown that the hypothesis that at the center of M87 there is a supermassive Kerr rotating black hole was already the best explanation at the time in which the 2017 EHT experiment was conducted. My analysis is intertwined with considerations on realist and empiricist interpretations of IBE, which are used to assess whether the conclusion that the object at the center of M87 is a Kerr rotating black hole implies holding a realist commitment with respect to such object.  相似文献   

2.
It might seem impossible to apply Ian Hacking's experimental argument for scientific realism to astrophysical objects; indeed Hacking himself expressed scepticism about extragalactic entities. Such astrophysical antirealism has been the subject of intense debate and is usually seen as an undesired consequence of experimental realism. In this paper, I claim that it is possible to recast the experimental argument by reference to James Woodward's non-anthropocentric account of experimentation so as to apply it to astrophysical entities, such as gravitational lenses. I also argue that this new formulation of the experimental argument solves several problems with Hacking's original version.  相似文献   

3.
In a recent paper, Otávio Bueno (2012) introduced a narrower understanding of Hacking's concept of styles of scientific reasoning. Although its ultimate goal is to serve a pluralist view of science, Bueno's proposal is a thought-provoking attempt at outlining a concept of style that would keep most of the original understanding's heuristic value, while providing some analytical grip on the specific details of particular scientific practices. In this reply, I consider solely this latter more proximate goal. More precisely, I assess whether or not Bueno's narrower understanding of styles could provide historians and philosophers of science with a workable unit to investigate particular transformations in scientific practices. While the author's proposal is certainly interesting overall, the usefulness of the unit it describes may be compromised by three shortcomings: 1° the extent to which the unit is meant to be narrower is indeterminate; 2° it does not improve much on the analytical capabilities of Hacking's concept; and 3° like Hacking's concept it is rather powerless to capture the dynamical character of particular scientific practices.  相似文献   

4.
The goal of this paper, both historical and philosophical, is to launch a new case into the scientific realism debate: geocentric astronomy. Scientific realism about unobservables claims that the non-observational content of our successful/justified empirical theories is true, or approximately true. The argument that is currently considered the best in favor of scientific realism is the No Miracles Argument: the predictive success of a theory that makes (novel) observational predictions while making use of non-observational content would be inexplicable unless such non-observational content approximately corresponds to the world “out there”. Laudan's pessimistic meta-induction challenged this argument, and realists reacted by moving to a “selective” version of realism: the approximately true part of the theory is not its full non-observational content but only the part of it that is responsible for the novel, successful observational predictions. Selective scientific realism has been tested against some of the theories in Laudan's list, but the first member of this list, geocentric astronomy, has been traditionally ignored. Our goal here is to defend that Ptolemy's Geocentrism deserves attention and poses a prima facie strong case against selective realism, since it made several successful, novel predictions based on theoretical hypotheses that do not seem to be retained, not even approximately, by posterior theories. Here, though, we confine our work just to the detailed reconstruction of what we take to be the main novel, successful Ptolemaic predictions, leaving the full analysis and assessment of their significance for the realist thesis to future works.  相似文献   

5.
I review and critically examine the four textbook arguments commonly taken to establish that gravitational waves (GWs) carry energy-momentum: 1. the increase in kinetic energy that a GW confers on a ring of test particles, 3.Bondi/Feynman's Sticky Bead Argument of a GW heating up a detector, 3. nonlinearities within perturbation theory, construed as the gravity's contribution to its own source, and 4. the Noether Theorems, linking symmetries and conserved quantities. As it stands, each argument is found to be either contentious, or incomplete in that it presupposes substantive assumptions which the standard exposition glosses over. I finally investigate the standard interpretation of binary systems, according to which orbital decay is explained by the system's energy being dissipated via GW energy-momentum transport. I contend that for the textbook treatment of binary systems an alternative interpretation, drawing only on the general-relativistic equations of motions and the Einstein Equations, is available. It's argued to be even preferable to the standard interpretation. Thereby an inference to the best explanation for GW energy-momentum is blocked. I conclude that a defence of the claim that GWs carry energy can't rest on the standard arguments.  相似文献   

6.
Ulrich Meyer’s book The Nature of Time uses tense logic to argue for a ‘modal’ view of time, which replaces substantial times (as in Newton’s Absolute Time) with ‘ersatz times’ constructed using conceptually basic tense operators. He also argues against Bertrand Russell’s relationist theory, in which times are classes of events, and against the idea that relativity compels the integration of time and space (called by Meyer the Inseparability Argument). I find fault with each of these negative arguments, as well as with Meyer’s purported reconstruction of empty spacetime from tense operators and substantial spatial points. I suggest that Meyer’s positive project is best conceived as an elimination of time in the mode of Julian Barbour's The End of Time.  相似文献   

7.
Special relativity is preferable to those parts of Lorentz's classical ether theory it replaced because it shows that various phenomena that were given a dynamical explanation in Lorentz's theory are actually kinematical. In his book, Physical Relativity, Harvey Brown challenges this orthodox view. I defend it. The phenomena usually discussed in this context in the philosophical literature are length contraction and time dilation. I consider three other phenomena in the same class, each of which played a role in the early reception of special relativity in the physics literature: the Fresnel drag effect, the velocity dependence of electron mass, and the torques on a moving capacitor in the Trouton–Noble experiment. I offer historical sketches of how Lorentz's dynamical explanations of these phenomena came to be replaced by their now standard kinematical explanations. I then take up the philosophical challenge posed by the work of Harvey Brown and Oliver Pooley and clarify how those kinematical explanations work. In the process, I draw attention to the broader importance of the kinematics–dynamics distinction.  相似文献   

8.
J. D. Trout has recently developed a new defense of scientific realism, a new version of the No Miracles Argument. I critically evaluate Trout's novel defense of realism. I argue that Trout's argument for scientific realism and the related explanation for the success of science are self-defeating. In the process of arguing against the traditional realist strategies for explaining the success of science, he inadvertently undermines his own argument.  相似文献   

9.
Black holes have their own thermodynamics including notions of entropy and temperature and versions of the three laws. After a light introduction to black hole physics, I recollect how black hole thermodynamics evolved in the 1970s, while at the same time stressing conceptual points which were given little thought at that time, such as why the entropy should be linear in the black hole's surface area. I also review a variety of attempts made over the years to provide a statistical mechanics for black hole thermodynamics. Finally, I discuss the origin of the information bounds for ordinary systems that have arisen as applications of black hole thermodynamics.  相似文献   

10.
I present the reconstruction of the involvement of Karl Popper in the community of physicists concerned with foundations of quantum mechanics, in the 1980s. At that time Popper gave active contribution to the research in physics, of which the most significant is a new version of the EPR thought experiment, alleged to test different interpretations of quantum mechanics. The genesis of such an experiment is reconstructed in detail, and an unpublished letter by Popper is reproduced in the present paper to show that he formulated his thought experiment already two years before its first publication in 1982. The debate stimulated by the proposed experiment as well as Popper's role in the physics community throughout 1980s is here analysed in detail by means of personal correspondence and publications.  相似文献   

11.
I present in detail the case for regarding black hole thermodynamics as having a statistical-mechanical explanation in exact parallel with the statistical-mechanical explanation believed to underlie the thermodynamics of other systems. (Here I presume that black holes are indeed thermodynamic systems in the fullest sense; I review the evidence for that conclusion in the prequel to this paper.) I focus on three lines of argument: (i) zero-loop and one-loop calculations in quantum general relativity understood as a quantum field theory, using the path-integral formalism; (ii) calculations in string theory of the leading-order terms, higher-derivative corrections, and quantum corrections, in the black hole entropy formula for extremal and near-extremal black holes; (iii) recovery of the qualitative and (in some cases) quantitative structure of black hole statistical mechanics via the AdS/CFT correspondence. In each case I briefly review the content of, and arguments for, the form of quantum gravity being used (effective field theory; string theory; AdS/CFT) at a (relatively) introductory level: the paper is aimed at readers with some familiarity with thermodynamics, quantum mechanics and general relativity but does not presume advanced knowledge of quantum gravity. My conclusion is that the evidence for black hole statistical mechanics is as solid as we could reasonably expect it to be in the absence of a directly-empirically-verified theory of quantum gravity.  相似文献   

12.
Black hole complementarity has been proposed as a way to reconcile the result of Hawking, that black holes evaporate, with fundamental unitary quantum theories of gravity, such as string theory. Hawking's semi-classical analysis suggests that the evaporation of black holes is a non-unitary process, yet black hole complementarity gives a perspective on the semi-classical black hole which retains unitarity. We outline this proposal and address a number of methodological criticisms that have been made with regard to this proposal.  相似文献   

13.
14.
15.
I give a fairly systematic and thorough presentation of the case for regarding black holes as thermodynamic systems in the fullest sense, aimed at readers with some familiarity with thermodynamics, quantum mechanics and general relativity but not presuming advanced knowledge of quantum gravity. I pay particular attention to (i) the availability in classical black hole thermodynamics of a well-defined notion of adiabatic intervention; (ii) the power of the membrane paradigm to make black hole thermodynamics precise and to extend it to local-equilibrium contexts; (iii) the central role of Hawking radiation in permitting black holes to be in thermal contact with one another; (iv) the wide range of routes by which Hawking radiation can be derived and its back-reaction on the black hole calculated; (v) the interpretation of Hawking radiation close to the black hole as a gravitationally bound thermal atmosphere. In an appendix I discuss recent criticisms of black hole thermodynamics by Dougherty and Callender. This paper confines its attention to the thermodynamics of black holes; a sequel will consider their statistical mechanics.  相似文献   

16.
We assess Cartwright's models for probabilistic causality and, in particular, her models for EPR-like experiments of quantum mechanics. Our first objection is that, contrary to econometric linear models, her quasi-linear models do not allow for the unique estimation of parameters. We next argue that although, as Cartwright proves, Reichenbach's screening-off condition has only limited validity, her generalized condition is not empirically applicable. Finally, we show that her models for the EPR are mathematically incorrect and physically implausible.  相似文献   

17.
In the present paper I investigate the role that analogy plays in eighteenth-century biology and in Kant's philosophy of biology. I will argue that according to Kant, biology, as it was practiced in the eighteenth century, is fundamentally based on analogical reflection. However, precisely because biology is based on analogical reflection, biology cannot be a proper science. I provide two arguments for this interpretation. First, I argue that although analogical reflection is, according to Kant, necessary to comprehend the nature of organisms, it is also necessarily insufficient to fully comprehend the nature of organisms. The upshot of this argument is that for Kant our understanding of organisms is necessarily limited. Second, I argue that Kant did not take biology to be a proper science because biology was based on analogical arguments. I show that Kant stemmed from a philosophical tradition that did not assign analogical arguments an important justificatory role in natural science. Analogy, according to this conception, does not provide us with apodictically certain cognition. Hence, sciences based on analogical arguments cannot constitute proper sciences.  相似文献   

18.
Hume's essay ‘Of Miracles’ has been a focus of controversy ever since its publication. The challenge to Christian orthodoxy was only too evident, but the balance-of-probabilities criterion advanced by Hume for determining when testimony justifies belief in miracles has also been a subject of contention among philosophers. The temptation for those familiar with Bayesian methodology to show that Hume's criterion determines a corresponding balance-of-posterior probabilities in favour of miracles is understandable, but I will argue that their attempts fail. However, I show that his criterion generates a valid form of the so-called No-Miracles Argument appealed to by modern realist philosophers, whose own presentation of it, despite their possession of the probabilistic machinery Hume himself lacked, is invalid.  相似文献   

19.
This paper analyses documents from several US archives in order to examine the controversy that raged within the US scientific community over Dayton C. Miller's ether-drift experiments. In 1925, Miller announced that his repetitions of the famous Michelson-Morley experiment had shown a slight but positive result: an ether-drift of about 10 kilometres per second. Miller's discovery triggered a long debate in the US scientific community about the validity of Einstein's relativity theories. Between 1926 and 1930 some researchers repeated the Michelson-Morley experiment, but no one found the same effect as Miller had. The inability to confirm Miller's result, paired with the fact that no other ether theory existed that could compete with special relativity theory, made his result an enigmatic one. It thus remained of little interest to the scientific community until 1954, when Robert S. Shankland and three colleagues reanalysed the data and proposed that Miller's periodic fringe shift could be attributed to temperature effects. Whereas most of the scientific community readily accepted this explanation as the conclusion of the matter, some contemporary anti-relativists have contested Shankland's methodology up to now. The historical accounts of Miller's experiments provide contradictory reports of the reaction of the US scientific community and do not analyse the mechanisms of the controversy. I will address this shortcoming with an examination of private correspondence of several actors involved in these experiments between 1921 and 1955. A complex interconnection of epistemic elements, sociological factors, and personal interests played a fundamental role in the closure of this experimental controversy in the early 1930s, as well as in the reception of Shankland's reanalysis in the 1950s.  相似文献   

20.
In the area of social science, in particular, although we have developed methods for reliably discovering the existence of causal relationships, we are not very good at using these to design effective social policy. Cartwright argues that in order to improve our ability to use causal relationships, it is essential to develop a theory of causation that makes explicit the connections between the nature of causation, our best methods for discovering causal relationships, and the uses to which these are put. I argue that Woodward's interventionist theory of causation is uniquely suited to meet Cartwright's challenge. More specifically, interventionist mechanisms can provide the bridge from ‘hunting causes’ to ‘using them’, if interventionists (i) tell us more about the nature of these mechanisms, and (ii) endorse the claim that it is these mechanisms—or whatever constitutes them—that make causal claims true. I illustrate how having an understanding of interventionist mechanisms can allow us to put causal knowledge to use via a detailed example from organic chemistry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号