首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
ALCAM/CD166 is a member of the immunoglobulin superfamily of cell adhesion molecules (Ig-CAMs) which mediates intercellular adhesion through either homophilic (ALCAM–ALCAM) or heterophilic (ALCAM–CD6) interactions. ALCAM-mediated adhesion is crucial in different physiological and pathological phenomena, with particular relevance in leukocyte extravasation, stabilization of the immunological synapse, T cell activation and proliferation and tumor growth and metastasis. Although the functional implications of ALCAM in these processes is well established, the mechanisms regulating its adhesive capacity remain obscure. Using confocal microscopy colocalization, and biochemical and functional analyses, we found that ALCAM directly associates with the tetraspanin CD9 on the leukocyte surface in protein complexes that also include the metalloproteinase ADAM17/TACE. The functional relevance of these interactions is evidenced by the CD9-induced upregulation of both homophilic and heterophilic ALCAM interactions, as reflected by increased ALCAM-mediated cell adhesion and T cell migration, activation and proliferation. The enhancement of ALCAM function induced by CD9 is mediated by a dual mechanism involving (1) augmented clustering of ALCAM molecules, and (2) upregulation of ALCAM surface expression due to inhibition of ADAM17 sheddase activity.  相似文献   

2.
The inhibitor of growth (ING) family of tumor suppressors has five members and is implicated in the control of apoptosis, senescence, DNA repair, and cancer progression. However, little is known about ING activity in the regulation of cancer progression. ING members and splice variants seem to behave differently with respect to cancer invasion and metastasis. Interaction with histone trimethylated at lysine 4 (H3K4me3), hypoxia inducible factor-1 (HIF-1), p53, and nuclear factor kappa-B (NF-κB) are potential mechanisms by which ING members exert effects on invasion and metastasis. Subcellular mislocalization, rapid protein degradation, and to a lesser extent ING gene mutation are among the mechanisms responsible for inappropriate ING levels in cancer cells. The aim of this review is to summarize the different roles of ING family tumor suppressors in cancer progression and the molecular mechanisms involved.  相似文献   

3.
CD24 is a glycosyl-phosphatidylinositol-anchored membrane protein that is frequently over-expressed in a variety of human carcinomas and is correlated with poor prognosis. In cancer cell lines, changes of CD24 expression can alter several cellular properties in vitro and tumor growth in vivo. However, little is known about how CD24 mediates these effects. Here we have analyzed the functional consequences of CD24 knock-down or over-expression in human cancer cell lines. Depletion of CD24 reduced cell proliferation and adhesion, enhanced apoptosis, and regulated the expression of various genes some of which were identified as STAT3 target genes. Loss of CD24 reduced STAT3 and FAK phosphorylation. Diminished STAT3 activity was confirmed by specific reporter assays. We found that reduced STAT3 activity after CD24 knock-down was accompanied by altered Src phosphorylation. Silencing of Src, similar to CD24, targeted the expression of prototype STAT3-regulated genes. Likewise, the over-expression of CD24 augmented Src-Y416 phosphorylation, the recruitment of Src into lipid rafts and the expression of STAT3-dependent target genes. An antibody to CD24 was effective in reducing tumor growth of A549 lung cancer and BxPC3 pancreatic cancer xenografts in mice. Antibody treatment affected the level of Src-phosphorylation in the tumor and altered the expression of STAT3 target genes. Our results provide evidence that CD24 regulates STAT3 and FAK activity and suggest an important role of Src in this process. Finally, the targeting of CD24 by antibodies could represent a novel route for tumor therapy.  相似文献   

4.
The fatality of cancer predominantly results from the dissemination of primary tumor cells to distant sites and the subsequent formation of metastases. During tumor progression, some of the primary tumor cells as well as the tumor microenvironment undergo characteristic molecular changes, which are essential for the metastatic dissemination of tumor cells. In this review, we will discuss recent insights into pro-metastatic events occurring in tumor cells themselves and in the tumor stroma. Tumor cell-intrinsic alterations include the loss of cell polarity and alterations in cell-cell and cell-matrix adhesion as well as deregulated receptor kinase signaling, which together support detachment, migration and invasion of tumor cells. On the other hand, the tumor stroma, including endothelial cells, fibroblasts and cells of the immune system, is engaged in an active molecular crosstalk within the tumor microenvironment. Subsequent activation of blood vessel and lymph vessel angiogenesis together with inflammatory and immune-suppressive responses further promotes cancer cell migration and invasion, as well as initiation of the metastatic process. Received 4 July 2005; received after revision 3 November 2005; accepted 14 November 2005  相似文献   

5.
Mechanism of HAb18G/CD147 underlying the metastasis process of human hepatoma cells has not been determined. In the present study, we found that integrin α3β1 colocalizes with HAb18G/CD147 in human 7721 hepatoma cells. The enhancing effect of HAb18G/CD147 on adhesion, invasion capacities and matrix metalloproteinases (MMPs) secretion was decreased by integrin α3β1 antibodies (p<0.01). The expressions of integrin downstream molecules including focal adhesion kinase (FAK), phospho-FAK (p-FAK), paxillin, and phospho-paxillin (p-paxillin) were increased in human hepatoma cells overexpressing HAb18G/CD147. Deletion of HAb18G/CD147 reduces the quantity of focal adhesions and rearranges cytoskeleton. Wortmannin and LY294002, specific phosphatidylinositol kinase (PI3K) inhibitors, reversed the effect of HAb18G/CD147 on the regulation of intracellular Ca2+ mobilization, significantly reducing cell adhesion, invasion and MMPs secretion potential (p<0.01). Together, these results suggest that HAb18G/CD147 enhances the invasion and metastatic potentials of human hepatoma cells via integrin α3β1-mediated FAK-paxillin and FAKPI3K-Ca2+ signal pathways. Received 5 June 2008; received after revision 16 July 2008; accepted 23 July 2008  相似文献   

6.
Proteases are crucial for development, tissue remodeling, and tumorigenesis. Matrix metalloproteinases (MMPs) family, in particular, consists of more than 20 members with unique substrates and diverse function. The expression and activity of MMPs in a variety of human cancers have been intensively studied. MMPs have well-recognized roles in the late stage of tumor progression, invasion, and metastasis. However, increasing evidence demonstrates that MMPs are involved earlier in tumorigenesis, e.g., in malignant transformation, angiogenesis, and tumor growth both at the primary and metastatic sites. Recent studies also suggest that MMPs play complex roles in tumor progression. While most MMPs promote tumor progression, some of them may protect the host against tumorigenesis in a context-dependent manner. MMPs have been chosen as promising targets for cancer therapy on the basis of their aberrant up-regulation in malignant tumors and their ability to promote cancer metastasis. Although preclinical studies testing the efficacy of MMP suppression in tumor models were so encouraging, the results of clinical trials in cancer patients have been rather disappointing. Here, we review the complex roles of MMPs and their endogenous inhibitors such as tissue inhibitors of metalloproteinase in tumorigenesis and strategies in suppressing MMPs.  相似文献   

7.
目的:探讨胃癌组织中表皮生长因子样结构域(EGFL7)的表达及其与胃癌临床病理特征的关系。方法:采用免疫组织化学SP法分别检测45例胃癌组织中EGFL7的表达水平及微血管密度(MVD,CD34标记),分析EGFL7的表达与MVD及胃癌临床病理特征之间的关系。结果:EGFL7的表达在有淋巴结转移组中的阳性率(84.6%)高于无淋巴结转移组(57.9%),在浸润浆膜层组中的阳性率(84.4%)高于未浸润浆膜层组(46.2%)。胃癌组织中EGFL7的表达与淋巴结转移和浸润程度呈正相关(P〈0.05),但与患者的年龄、性别、肿瘤的分化程度无关(P〉0.05)。胃腺癌低分化纽MVD(37.62±10.42)高于高分化组(27.91±9.93)和中分化组(28.40±9.18);浸润至浆膜层组MVD(34.25±10.43)高于未至浆膜层组(26.69±8.66);有淋巴结转移组MVD(33.00±9.99)高于无淋巴结转移组(25.94±9.34)。癌组织中MVD值与分化程度、浸润深度及有无淋巴结转移呈正相关(P〈0.05),但与年龄、性别无关(P〉0.05)。在EGFL7表达阳性的肿瘤纽织中MVD均值为33.80±10.56,高于EGFL7表达阴性的肿瘤组织中MVD均值26.004-7.21(P〈0.05),采用Pearson积差相关系数进行分析,发现MVD值与EGFL7的表达成正相关(r=0.313,P〈0.05)。结论:EGFL7的高表达可能促进了胃癌的浸润和转移,其机制可能与促进胃癌组织中的血管新生有关。  相似文献   

8.
A key regulatory mechanism in cell motility is the control of myosin activity, which in non-muscle cells is determined by phosphorylation of the myosin regulatory light chain (MRLC). Here we show that MRLC-interacting protein (MIR)-interacting saposin-like protein (MSAP) enhances cell spreading in fibroblasts and migration of rat C6 glioma cells through increases in MRLC phosphorylation. Overexpression of MSAP enhanced the motility of glioma cells measured in matrigel invasion chambers and using a scratch assay. Downregulation of MSAP by RNA interference significantly decreased glioma cell migration and phosphorylation of MRLC. Inhibition of the corresponding MRLC kinase by ML-7 did not affect migration of MSAP-overexpressing cells. The present results show that MSAP controls glioma cell migration via enhancement of MRLC phosphorylation. This effect is independent of the activity of MRLC kinase. Thus, MSAP is a novel modulator of cell motility that influences migration of glioma cells and possibly other tumors.Received 9 February 2005; received after revision 2 March 2005; accepted 21 March 2005  相似文献   

9.
The protein kinase D (PKD) family of proteins are important regulators of tumor growth, development, and progression. CRT0066101, an inhibitor of PKD, has antitumor activity in multiple types of carcinomas. However, the effect and mechanism of CRT0066101 in bladder cancer are not understood. In the present study, we show that CRT0066101 suppressed the proliferation and migration of four bladder cancer cell lines in vitro. We also demonstrate that CRT0066101 blocked tumor growth in a mouse flank xenograft model of bladder cancer. To further assess the role of PKD in bladder carcinoma, we examined the three PKD isoforms and found that PKD2 was highly expressed in eight bladder cancer cell lines and in urothelial carcinoma tissues from the TCGA database, and that short hairpin RNA (shRNA)-mediated knockdown of PKD2 dramatically reduced bladder cancer growth and invasion in vitro and in vivo, suggesting that the effect of the compound in bladder cancer is mediated through inhibition of PKD2. This notion was corroborated by demonstrating that the levels of phospho-PKD2 were markedly decreased in CRT0066101-treated bladder tumor explants. Furthermore, our cell cycle analysis by flow cytometry revealed that CRT0066101 treatment or PKD2 silencing arrested bladder cancer cells at the G2/M phase, the arrest being accompanied by decreases in the levels of cyclin B1, CDK1 and phospho-CDK1 (Thr161) and increases in the levels of p27Kip1 and phospho-CDK1 (Thr14/Tyr15). Moreover, CRT0066101 downregulated the expression of Cdc25C, which dephosphorylates/activates CDK1, but enhanced the activity of the checkpoint kinase Chk1, which inhibits CDK1 by phosphorylating/inactivating Cdc25C. Finally, CRT0066101 was found to elevate the levels of Myt1, Wee1, phospho-Cdc25C (Ser216), Gadd45α, and 14-3-3 proteins, all of which reduce the CDK1-cyclin B1 complex activity. These novel findings suggest that CRT0066101 suppresses bladder cancer growth by inhibiting PKD2 through induction of G2/M cell cycle arrest, leading to the blockade of cell cycle progression.  相似文献   

10.
Integrins engage components of the extracellular matrix, and in collaboration with other receptors, regulate signaling cascades that impact cell behavior in part by modulating the cell’s cytoskeleton. Integrins have long been known to function together with the actin cytoskeleton to promote cell adhesion, migration, and invasion, and with the intermediate filament cytoskeleton to mediate the strong adhesion needed for the maintenance and integrity of epithelial tissues. Recent studies have shed light on the crosstalk between integrin and the microtubule cytoskeleton. Integrins promote microtubule nucleation, growth, and stabilization at the cell cortex, whereas microtubules regulate integrin activity and remodeling of adhesion sites. Integrin-dependent stabilization of microtubules at the cell cortex is critical to the establishment of apical–basal polarity required for the formation of epithelial tissues. During cell migration, integrin-dependent microtubule stabilization contributes to front–rear polarity, whereas microtubules promote the turnover of integrin-mediated adhesions. This review focuses on this interdependent relationship and its impact on cell behavior and function.  相似文献   

11.
A disintegrin and a metalloprotease (ADAM) 9 is a metzincin cell-surface protease involved in several biological processes such as myogenesis, fertilization, cell migration, inflammatory response, proliferation, and cell–cell interactions. ADAM9 has been found over-expressed in several solid tumors entities such as glioma, melanoma, prostate cancer, pancreatic ductal adenocarcinoma, gastric, breast, lung, and liver cancers. Immunohistochemical analyses highlight ADAM9 expression by actual cancer cells and associate its abundant presence with clinicopathological features such as shortened overall survival, poor tumor grade, de-differentiation, therapy resistance, and metastasis formation. In each of these tumors, ADAM9 may contribute to tumor biology via proteolytic or non-proteolytic mechanisms. For example, in liver cancer, ADAM9 has been found to shed MHC class I polypeptide-related sequence A, contributing towards the evasion of tumor immunity. ADAM9 may also contribute to tumor biology in non-proteolytic ways probably through interaction with different integrins. For example, in melanoma, the interaction between ADAM9 and β1 integrins facilitates tumor stroma cross talks, which then promotes invasion and metastasis via the activation of MMP1 and MMP2. In breast cancer, the interaction between β1 integrins on endothelial cells and ADAM9 on tumor cells facilitate tumor cell extravasation and invasion to distant sites. This review summarizes the present knowledge on ADAM9 in solid cancers, and the different mechanisms which it employ to drive tumor progression.  相似文献   

12.
The Ras family of GTPases in cancer cell invasion   总被引:3,自引:0,他引:3  
The ability of tumoral cells to invade surrounding tissues is a prerequisite for metastasis. This is the most life-threatening event of tumor progression, and so research is intensely focused on elucidating the mechanisms responsible for invasion and metastasis. The Ras superfamily of GTPases comprises several subfamilies of small GTP-binding proteins whose functions include the control of proliferation, differentiation, and apoptosis, as well as cytoskeleton organization. The development of metastasis is a multistep process that requires coordinated activation of proliferation, motility, changes in normal cell-to-cell and cell-to-substrate contacts, degradation of extracellular matrix, inhibition of apoptosis, and adaptation to an inappropriate tissue environment. Several members of the Ras superfamily of proteins have been implicated in these processes. The present review summarizes the current knowledge in this field.  相似文献   

13.
14.
As a member of tumor suppressor p53 family, p63, a gene encoding versatile protein variant, has been documented to correlate with cancer formation and progression, though it is rarely mutated in cancer patients. However, it has long been controversial on whether p63 is an oncogene or a tumor suppressor. Here, we comprehensively reviewed reports on roles of p63 in development, tumorigenesis and tumor progression. According to data from molecular cell biology, genetic models and clinic research, we conclude that p63 may act as either an oncogene or a tumor suppressor gene in different scenarios: TA isoforms of p63 gene are generally tumor-suppressive through repressing cell proliferation, survival and metastasis; ΔN isoforms, however, may initiate tumorigenesis via promoting cell proliferation and survival, but inhibit tumor metastasis and progression; effects of p63 on tumor formation and progression depend on the context of the whole p53 family, and either amplification or loss of p63 gene locus can break the balance to cause tumorigenesis.  相似文献   

15.
16.
Tumor cell migration is essential for invasion and dissemination from primary solid tumors and for the establishment of lethal secondary metastases at distant organs. In vivo and in vitro models enabled identification of different factors in the tumor microenvironment that regulate tumor progression and metastasis. However, the mechanisms by which tumor cells integrate these chemical and mechanical signals from multiple sources to navigate the complex microenvironment remain poorly understood. In this review, we discuss the factors that influence tumor cell migration with a focus on the migration of transformed carcinoma cells. We provide an overview of the experimental and computational methods that allow the investigation of tumor cell migration, and we highlight the benefits and shortcomings of the various assays. We emphasize that the chemical and mechanical stimulus paradigms are not independent and that crosstalk between them motivates the development of new assays capable of applying multiple, simultaneous stimuli and imaging the cellular migratory response in real-time. These next-generation assays will more closely mimic the in vivo microenvironment to provide new insights into tumor progression, inform techniques to control tumor cell migration, and render cancer more treatable.  相似文献   

17.
Protein 4.1B/DAL-1 is a membrane skeletal protein that belongs to the protein 4.1 family. Protein 4.1B/DAL-1 is localized to sites of cell–cell contact and functions as an adapter protein, linking the plasma membrane to the cytoskeleton or associated cytoplasmic signaling effectors and facilitating their activities in various pathways. Protein 4.1B/DAL-1 is involved in various cytoskeleton-associated processes, such as cell motility and adhesion. Moreover, protein 4.1B/DAL-1 also plays a regulatory role in cell growth, differentiation, and the establishment of epithelial-like cell structures. Protein 4.1B/DAL-1 is normally expressed in multiple human tissues, but loss of its expression or prominent down-regulation of its expression is frequently observed in corresponding tumor tissues and tumor cell lines, suggesting that protein 4.1B/DAL-1 is involved in the molecular pathogenesis of these tumors and acts as a potential tumor suppressor. This review will focus on the structure of protein 4.1B/DAL-1, 4.1B/DAL-1-interacting molecules, 4.1B/DAL-1 inactivation and tumor progression, and anti-tumor activity of the 4.1B/DAL-1.  相似文献   

18.
The integrins are a large family of heterodimeric cell adhesion receptors mediating cell-matrix and cell-cell adhesion. They seem to play a central role in cell migration and invasion and are therefore essential in processes such as healing of tissue injuries and the progression of human cancer. Integrins function in cell invasion by mediating cell movement on matrix molecules and also by regulating the expression of matrix-degrading enzymes, namely the matrix metalloproteinases. Here we review recent findings on the mechanisms by which integrins regulate matrix degradation. A novel, multistep model of integrin-guided collagen degradation is proposed.  相似文献   

19.
Neutrophils are being increasingly recognized as an important element in tumor progression. They have been shown to exert important effects at nearly every stage of tumor progression with a number of studies demonstrating that their presence is critical to tumor development. Novel aspects of neutrophil biology have recently been elucidated and its contribution to tumorigenesis is only beginning to be appreciated. Neutrophil extracellular traps (NETs) are neutrophil-derived structures composed of DNA decorated with antimicrobial peptides. They have been shown to trap and kill microorganisms, playing a critical role in host defense. However, their contribution to tumor development and metastasis has recently been demonstrated in a number of studies highlighting NETs as a potentially important therapeutic target. Here, studies implicating NETs as facilitators of tumor progression and metastasis are reviewed. In addition, potential mechanisms by which NETs may exert these effects are explored. Finally, the ability to target NETs therapeutically in human neoplastic disease is highlighted.  相似文献   

20.
Mast cells are multipotent effector cells of the immune system. They are able to induce and enhance angiogenesis via multiple pathways. (-)-Epigallocatechin-3-gallate (EGCG), a major component of green tea and a putative chemopreventive agent, was reported to inhibit tumor invasion and angiogenesis, processes that are essential for tumor growth and metastasis. Using the human mast cell line HMC-1 and commercial cDNA macroarrays, we evaluated the effect of EGCG on the expression of angiogenesis-related genes. Our data show that among other effects, EGCG treatment reduces expression of two integrins (alpha5 and beta3) and a chemokine (MCP1), resulting in a lower adhesion of mast cells associated with a decreased potential to produce signals eliciting monocyte recruitment. These effects on gene expression levels are functionally validated by showing inhibitory effects in adhesion, aggregation, migration and recruitment assays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号