首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The protein kinase CK2 holoenzyme is composed of two regulatory β subunits and two catalytic α or α' subunits. Although experimental evidence for involvement of the enzyme in the regulation of cell proliferation is accumulating, the exact mechanism of its action is still unclear. The subcellular localization of the enzyme may be a key to its function. We have recently shown that the CK2 holoenzyme is tightly associated with the Golgi complex and the endoplasmic reticulum. Centrosomes, which organize spindle formation during the cell cycle and microtubule cytoskeleton formation and, thereby, the location and orientation of different organelles in the cell, are in close vicinity to the Golgi complex. Because several kinases and phosphatases have been described to regulate the functions of the centrosome, we analysed the association of CK2 with these organelles. Using biochemical cell fractionation and coimmunoprecipitation, we never found the holoenzyme but only the catalytic asubunits associated with the centrosome. These data were confirmed by immunoelectron microscopy. Thus, the present data point to a particular role of the catalytic α and α' subunit of protein kinase CK2, which may be different from their roles in the holoenzyme. Received 2 August 2002; received after revision 2 October 2002; accepted 22 October 2002 RID="*" ID="*"Corresponding author.  相似文献   

2.
Porphyromonas gingivalis 381 lipopolysaccharide (LPS) definitely exhibited mitogenic activity in purified B-cells, separated from spleens of LPS-responsive C3H/HeN mice and LPS-non-responsive C3H/HeJ mice by using a magnetic cell sorting system. The mitogenic activity induced byP. gingivalis LPS was incompletely inhibited by polymyxin B.P. gingivalis LPS also induced a higher production of interleukin-6 (IL-6) in splenic B-cells of C3H/HeN mice as compared withEscherichia coli LPS. Furthermore,P. gingivalis LPS, but notE. coli LPS, induced definite IL-6 production in C3H/HeJ mice.P. gingivalis LPS increased tyrosine, serine/threonine phosphorylation of proteins with various major induced bands in splenic B-cells of both C3H/HeN and C3H/HeJ mice. Additionally, radioiodinatedP. gingivalis LPS, similarly toE. coli LPS, bound to a 73-kDa protein on C3H/HeJ as well as C3H/HeN B-cells. ThusP. gingivalis LPS may activate B-cells of C3H/HeJ as well as C3H/HeN mice via the LPS-specific binding protein on the cells.  相似文献   

3.
Summary The K1 killer toxin ofSaccharomyces cerevisiae is a secreted, virally-coded protein lethal to sensitive yeasts. Killer yeasts are immune to the toxin they produce. This killer system has been extensively examined from genetic and molecular perspectives. Here we review the biology of killer yeasts, and examine the synthesis and action of the protein toxin and the immunity component. We summarise the structure of the toxin precursor gene and its protein products, outline the proteolytic processing of the toxin subunits from the precursor, and their passage through the yeast secretory pathway. We then discuss the mode of action of the toxin, its lectin-like interaction with a cell wall glucan, and its probable role in forming channels in the yeast plasma membrane. In addition we describe models of how a toxin precursor species functions as the immunity component, probably by interfering with channel formation. We conclude with a review of the functional domains of the toxin structural gene as determined by site-directed mutagenesis. This work has identified regions associated with glucan binding, toxin activity, and immunity.  相似文献   

4.
Conclusion The insulin receptor is an integral protein of the plasma membrane of the cell. It is composed of two subunits: an subunit, which binds the hormone, and a subunit which is a tyrosine specific protein kinase capable of undergoing autophosphorylation. These independent subunits are synthesized by way of a higher molecular weight single chain precursor and thus are the product of a single gene29, 49, 85 localized to chromosome 1929, 91. Assuming that the insulin receptor is synthesized in the same fashion as other integral membrane glycoproteins, then the nucleus, the rough endoplasmic reticulum, and the Golgi apparatus are involved in its biosynthesis. Further, there must be some form of transport of the mature receptor subunits to the plasma membrane where they are inserted.By contrast, the endocytotic route involves coated pits, coated vesicles, large clear vesicles or endosomes, multivesicular bodies and other lysosomal forms. In addition, it is possible that some other as yet unidentified organelle is involved in recycling (fig. 8). At the present time, with respect to the insulin receptor, the biosynthetic pathway and the endocytotic pathway appear to be separate. Further, it does not appear that either pathway, i. e. synthesis or endocytosis, exerts a regulatory function over the other.  相似文献   

5.
Circular proteoglycans from sponges: first members of the spongican family   总被引:3,自引:0,他引:3  
Species-specific cell adhesion in marine sponges is mediated by a new family of modular proteoglycans whose general supramolecular structure resembles that of hyalectans. However, neither their protein nor their glycan moieties have significant sequence homology to other proteoglycans, despite having protein subunits equivalent to link proteins and to proteoglycan monomer core proteins, and glycan subunits equivalent to hyaluronan and to the glycosaminoglycans of hyalectans. In some species, these molecular components are assembled into a structure with a circular core formed by the link protein- and hyaluronan-like subunits. Besides their involvement in cell adhesion, these sponge proteoglycans, for which we propose the term spongicans, participate in signal transduction processes and are suspected to play a role in sponge self-nonself recognition. Their in vivo roles and the mild methods used to purify large amounts of functionally active spongicans make them ideal models to study the functions and possible new applications of proteoglycans in biomedical research. Received 21 May 2002; received after revision 5 July 2002; accepted 10 July 2002 RID="*" ID="*"Corresponding author.  相似文献   

6.
The proteasome is a multi-catalytic protein complex whose primary function is the degradation of abnormal or foreign proteins. Upon exposure of cells to interferons (IFNs), the β1i/LMP2, β2i/MECL-1, and β5i/LMP7 subunits are induced and incorporated into newly synthesized immunoproteasomes (IP), which are thought to function solely as critical players in the optimization of the CD8(+) T-cell response. However, the observation that IP are present in several non-immune tissues under normal conditions and/or following pathological events militates against the view that its role is limited to MHC class I presentation. In support of this concept, the recent use of genetic models deficient for β1i/LMP2, β2i/MECL-1, or β5i/LMP7 has uncovered unanticipated functions for IP in innate immunity and non-immune processes. Herein, we review recent data in an attempt to clarify the role of IP beyond MHC class I epitope presentation with emphasis on its involvement in the regulation of protein homeostasis, cell proliferation, and cytokine gene expression.  相似文献   

7.
G protein betagamma subunits are central participants in G protein-coupled receptor signaling pathways. They interact with receptors, G protein alpha subunits and downstream targets to coordinate multiple, different GPCR functions. Much is known about the biology of Gbetagamma subunits but mysteries remain. Here, we will review what is known about general aspects of structure and function of Gbetagamma as well as discuss emerging mechanisms for regulation of Gbetagamma signaling. Recent data suggest that Gbetagamma is a potential therapeutic drug target. Thus, a thorough understanding of the molecular and physiological functions of Gbetagamma has significant implications.  相似文献   

8.
Voltage-gated calcium channels are important mediators of calcium influx into electrically excitable cells. The amount of calcium entering through this family of channel proteins is not only determined by the functional properties of channels embedded in the plasma membrane but also by the numbers of channels that are expressed at the cell surface. The trafficking of channels is controlled by numerous processes, including co-assembly with ancillary calcium channel subunits, ubiquitin ligases, and interactions with other membrane proteins such as G protein coupled receptors. Here we provide an overview about the current state of knowledge of calcium channel trafficking to the cell membrane, and of the mechanisms regulating the stability and internalization of this important ion channel family.  相似文献   

9.
Adducin: structure, function and regulation   总被引:7,自引:0,他引:7  
Adducin is a ubiquitously expressed membrane-skeletal protein localized at spectrin-actin junctions that binds calmodulin and is an in vivo substrate for protein kinase C (PKC) and Rho-associated kinase. Adducin is a tetramer comprised of either alpha/beta or alpha/gamma heterodimers. Adducin subunits are related in sequence and all contain an N-terminal globular head domain, a neck domain and a C-terminal protease-sensitive tail domain. The tail domains of all adducin subunits end with a highly conserved 22-residue myristoylated alanine-rich C kinase substrate (MARCKS)-related domain that has homology to MARCKS protein. Adducin caps the fast-growing ends of actin filaments and also preferentially recruits spectrin to the ends of filaments. Both the neck and the MARCKS-related domains are required for these activities. The neck domain self-associates to form oligomers. The MARCKS-related domain binds calmodulin and contains the major phosphorylation site for PKC. Calmodulin, gelsolin and phosphorylation by the kinase inhibit in vitro activities of adducin involving actin and spectrin. Recent observations suggest a role for adducin in cell motility, and as a target for regulation by Rho-dependent and Ca2+-dependent pathways. Prominent physiological sites of regulation of adducin include dendritic spines of hippocampal neurons, platelets and growth cones of axons.  相似文献   

10.
The ubiquitin–proteasome pathway of protein degradation is one of the major mechanisms that are involved in the maintenance of the proper levels of cellular proteins. The regulation of proteasomal degradation thus ensures proper cell functions. The family of proteins containing ubiquitin-like (UbL) and ubiquitin-associated (UBA) domains has been implicated in proteasomal degradation. UbL–UBA domain containing proteins associate with substrates destined for degradation as well as with subunits of the proteasome, thus regulating the proper turnover of proteins.  相似文献   

11.
MD2, a 160-residue accessory glycoprotein, is responsible for the recognition and binding of Gram-negative bacterial membrane component, lipopolysaccharide (LPS). Internalization of pathogen inside the mononuclear phagocytes has also been attributed to MD2 which leads to the clearance of pathogens from the host. However, not much is known about the segments in MD2 that are responsible for LPS interaction or internalization of pathogen inside the defense cells. A 16-residue stretch (MD54) from MD2 protein has been identified that possesses a short heptad repeat sequence and four cationic residues enabling it to participate in both hydrophobic and electrostatic interactions with LPS. An MD54 analog of the same size was also designed in which a leucine residue at a heptadic position was replaced with an alanine residue. MD54 but not its analog, MMD54 induced aggregation of LPS and aided in its internalization within THP-1 monocytes. Furthermore, MD54 inhibited LPS-induced nuclear translocation of NF-κB in PMA-treated THP-1 and TLR4/MD2/CD14-transfected HEK-293T cells and the production of pro-inflammatory cytokines. In addition, in in vivo experiments, MD54 showed marked protection and survival of mice against LPS-induced inflammation and death. Overall, we have identified a short peptide with heptad repeat sequence from MD2 that can cause aggregation of LPS and abet in its internalization within THP-1 cells, resulting in attenuation of LPS-induced pro-inflammatory responses in vitro and in vivo.  相似文献   

12.
Trimeric guanine nucleotide-binding proteins (G proteins) function as the key regulatory elements in a number of transmembrane signaling cascades where they convey information from agonist-activated receptors to effector molecules. The subcellular localization of G proteins is directly related to their functional role, i.e., the dominant portion of the cellular pool of G proteins resides in the plasma membrane. An intimate association of G protein subunits with the plasma membrane has been well known for a long time. However, results of a number of independent studies published in the past decade have indicated clearly that exposure of intact target cells to agonists results in subcellular redistribution of the cognate G proteins from plasma membranes to the light-vesicular membrane fractions, in internalization from the cell surface into the cell interior and in transfer from the membrane to the soluble cell fraction (high-speed supernatant), i.e., solubilization. Solubilization of G protein α subunits as a consequence of stimulation of G protein-coupled receptors (GPCRs) with agonists has also been observed in isolated membrane preparations. The membrane-cytosol shift of G proteins was detected even after direct activation of these proteins by non-hydrolyzable analogues of GTP or by cholera toxin-induced ADP-ribosylation. In addition, prolonged stimulation of GPCRs with agonists has been shown to lead to down-regulation of the relevant G proteins. Together, these data suggest that G proteins might potentially participate in a highly complex set of events, which are generally termed desensitization of the hormone response. Internalization, subcellular redistribution, solubilization, and down-regulation of trimeric G proteins may thus provide an additional means (i.e., beside receptor-based mechanisms) to dampen the hormone or neurotransmitter response after sustained (long-term) exposure. Received 31 August 2001; received after revision 31 October 2001; accepted 7 November 2001  相似文献   

13.
The serine/threonine protein phosphatase 2A (PP2A) represents a large family of highly conserved heterotrimeric enzymes. Their critical importance in cell homeostasis is underlined by the fact that they are targets of natural toxins like the tumor promoter okadaic acid, and of simian virus 40 small tumor antigen (SV40 small t), a viral protein known to promote cell transformation. Furthermore, mutated or lower expression levels of PP2A subunits have been found in certain cancers. One major known event in PP2A-dependent cell transformation is the alteration of key signaling pathways that control cell growth and survival. In this review, we focus on how PP2A enzymes also affect cell adhesion and cytoskeletal dynamics, the disruption of which is linked to loss of cell polarity, increased cell motility and invasiveness. We also examine how those various pathways participate in the transforming activity of SV40 small t. Received 29 June 2006; received after revision 3 August 2006; accepted 20 September 2006  相似文献   

14.
15.
16.
Protein kinase CK2 is an ubiquitously expressed enzyme that is absolutely necessary for the survival of cells. Besides the holoenzyme consisting of the regulatory β-subunit and the catalytic α- or α′-subunit, the subunits exist in separate forms. The subunits bind to a number of other cellular proteins. We show the expression of individual subunits as well as interaction with the transitional nuclear protein TNP1 and with the motor neuron protein KIF5C during spermatogenesis. TNP1 is a newly identified binding partner of the α-subunit of CK2. CK2α and KIF5C were found in late spermatogenesis, whereas CK2β and TNP1 were found in early spermatogenesis. CK2α, CK2α′, TNP1, and KIF5C were detected in the acrosome of spermatozoa, while CK2β was detectable in the mid-piece. Combinations of CK2 subunits might determine interactions with other proteins during spermatogenesis. KIF5C as a kinesin motor neuron protein is probably involved in the redistribution of proteins during spermatogenesis.  相似文献   

17.
The structure and function of heterotrimeric G protein subunits is known in considerable detail. Upon stimulation of a heptahelical receptor by the appropriate agonists, the cognate G proteins undergo a cycle of activation and deactivation; the α-subunits and the βγ-dimers interact sequentially with several reaction partners (receptor, guanine nucleotides and effectors as well as regulatory proteins) by exposing appropriate binding sites. For most of these domains, low molecular weight ligands have been identified that either activate or inhibit signal transduction. These ligands include short peptides derived from receptors, G protein subunits and effectors, mastoparan and related insect venoms, modified guanine nucleotides, suramin analogues and amphiphilic cations. Because compounds that act on G proteins may be endowed with new forms of selectivity, we propose that G protein subunits may therefore be considered as potential drug targets. Received 18 September 1998; received after revision 6 November 1998; accepted 11 November 1998  相似文献   

18.
19.
Heparanase activity plays a decisive role in cell dissemination associated with cancer metastasis. Cellular uptake of heparanase is considered a pre-requisite for the delivery of latent 65-kDa heparanase to lysosomes and its subsequent proteolytic processing and activation into 8- and 50-kDa protein subunits by cathepsin L. Heparan sulfate proteoglycans, and particularly syndecan, are instrumental for heparanase uptake and activation, through a process that has been shown to occur independent of rafts. Nevertheless, the molecular mechanism underlying syndecan-mediated internalization outside of rafts is unclear. Here, we examined the role of syndecan-1 cytoplasmic domain in heparanase processing, utilizing deletion constructs lacking the entire cytoplasmic domain (Delta), the conserved (C1 or C2), or variable (V) regions. Heparanase processing was markedly increased following syndecan-1 over-expression; in contrast, heparanase was retained at the cell membrane and its processing was impaired in cells over-expressing syndecan-1 deleted for the entire cytoplasmic tail. We have next revealed that conserved domain 2 (C2) and variable (V) regions of syndecan-1 cytoplasmic tail mediate heparanase processing. Furthermore, we found that syntenin, known to interact with syndecan C2 domain, and α actinin are essential for heparanase processing.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号