首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
多金属氧酸盐由于具有快速可逆的多电子氧化还原反应特点,已成为备受瞩目的新一代超级电容器电极材料.但多金属氧酸盐易溶于水以及众多溶剂的缺点导致其循环稳定性能差、电容值偏低,制约了该电极材料的实际应用.将典型的多金属氧酸盐——磷钨酸盐通过四丁基溴化铵进行处理后,得到不溶于水的磷钨酸盐四丁基溴化铵电荷转移配合物.在三电极系统中测试其超级电容器性能,在5 A·g~(-1)电流密度下的电容值是64.1 F·g~(-1),在电流密度为15 A·g~(-1)时循环充电/放电15000次以后的电容保持率高达97%.磷钨酸盐四丁基溴化铵电荷转移配合物的循环稳定性能优于多数赝电容器电极材料,为磷钨酸盐在超级电容器电极材料方面的应用提供了一定的基础.  相似文献   

2.
锡基硒化物具有理论比容量高、导电性优异、成本低等优点,在电化学储能领域具有较好的应用前景.但其循环稳定性低及倍率性能差仍限制其进一步商业化应用.针对这些问题,采用简单的水热-硒化法制备SnSe2/碳布柔性负极材料,并对其进行了钠离子电池性能的测试.结果表明,制备的电极材料在电流密度为0.1 A·g-1下,经过100圈充放电循环后,放电容量为541.0mAh·g-1,且在不同电流密度充放电循环之后可逆比容量仍可高达503.9 mAh·g-1.  相似文献   

3.
采用水热法制备了MoS_2,并用乳液法进一步将聚苯胺(PANI)与MoS_2复合,得到具有纤维网状结构的MoS_2/PANI复合材料。利用扫描电子显微镜(SEM)、傅里叶变换红外光谱(FT-IR)、热重分析(TG)和电化学测试等研究了材料的形貌、结构和超级电容性能。结果表明,MoS_2/PANI既保持了PANI纳米纤维的基本形貌,又能使MoS_2较好地分散在PANI中形成网状结构。恒流充放电结果显示,MoS_2/PANI在0.2 A·g~(-1)电流密度下的比容量高达411 F·g~(-1),远高于纯PANI;Mo S2/PANI在1 A·g~(-1)电流密度下循环300次后比容量保持率为91.7%,表现出了良好的循环稳定性。MoS_2/PANI优异的超级电容性可归因于二者的相互协同作用。  相似文献   

4.
金属骨架有机多孔碳的制备及其在锂空气电池中的应用   总被引:1,自引:1,他引:0  
以苯二甲酸-锌配位化合物(MOF-5)为原料合成金属骨架有机多孔碳MOF-PC,并首次应用于锂空气电池.采用XRD、SEM、TEM、氮气脱吸附和恒流充放电测试研究了MOF-PC的物理及电化学性能.结果表明,样品MOF-PC为无定型碳,比表面积为654m2·g-1.以MOF-PC为空气电极的锂空气电池在0.1mA·cm-2电流密度下放电比容量高达3 183mAh·g-1,比传统碳材料(Super P)在相同电流密度下的容量高90%.  相似文献   

5.
采用静电纺丝和热处理技术成功制备了新型锂离子电池负极材料钛酸铜锂(Li2CuTi3O8)纳米粒子.通过扫描电子显微镜(SEM)、透射电镜(TEM)、X射线衍射(XRD)、热分析(TG-DTA)、循环伏安法(CV)、恒流充放电和电化学交流阻抗(EIS)等测试手段对材料的形貌、结构、物相及电化学性能进行了表征和研究.结果表明所制备的Li2CuTi3O8纳米粒子具有良好的立方尖晶石结构,粒度分布均匀,粒径约为100~200nm.充放电测试显示,当电流密度为25mA g-1时,Li2CuTi3O8纳米材料的首次可逆容量为245.3mAh g-1;且该电极在50,100,200,500,1 000mA g-1的电流密度下循环10次后,放电比容量分别为189.2,186.1,176.9,152.2,127.5mAh g-1当电流密度再回到25mA g-1时,比容量仍然可达到228.6mAh g-1,该材料显示出良好的循环稳定性和倍率性能,有望成为锂离子电池新型负极材料.  相似文献   

6.
以苯二甲酸-锌配位化合物(MOF-5)为原料合成金属骨架有机多孔碳MOF-PC,并首次应用于锂空气电池.采用XRD、SEM、TEM、氮气脱吸附和恒流充放电测试研究了MOF-PC的物理及电化学性能.结果表明,样品MOF-PC为无定型碳,比表面积为654m2g-1.以MOF-PC为空气电极的锂空气电池在0.1mA cm-2电流密度下放电比容量高达3 183mA h g-1,比传统碳材料Super P在相同电流密度下的放电比容量高90%.  相似文献   

7.
通过超声复合的方法将[{Cl_4Cu_(10)(pz)_(11)}{As_2W_(18)O_(62)}]·1.5 H_2O(缩写Cu_(10)As_2W_(18)),聚苯胺(PANI)和还原氧化石墨烯(RGO)进行分子自组装,成功得到了PANI@{Cu_(10)As_2W_(18)}/RGO三元复合材料.采用SEM和XRD等方法对该材料的表面形貌和结构进行表征.此外,对PANI@{Cu_(10)As_2W_(18)}/RGO三元复合材料进行了电化学性能的研究,发现当碳布作为集流体,电流密度为1 A·g~(-1)时,比电容为1232.5 F·g~(-1),且在5000次充放电循环后,其比电容为初始比电容的74.8%,优于玻碳电极(1 A·g~(-1),596.2F·g~(-1)).将其制成超级电容器,在电流密度为1 A·g~(-1)时,比电容为611.25 F·g~(-1).  相似文献   

8.
通过液相共沉淀法及高温热解法制备了裂开球形氧化镍氧化铜复合物.采用了X射线衍射光谱(XRD)、扫描电子显微镜(SEM)及透射电子显微镜(TEM)表征了该材料的结构.采用恒流充放电法研究了制备的NiO-CuO复合物在6 mol·L-1KOH溶液中的电化学行为.实验结果表明:这种裂开球形复合氧化物由氧化镍、氧化铜组成.该材料在1 A·g-1的电流密度下所得复合氧化物单电级比电容为735 F·g-1,并且在580次充放电循环后,容量保持率为98%,远远高于氧化镍(351 F·g-1)和氧化铜(262 F·g-1)的比容量.  相似文献   

9.
采用简单的水热法在泡沫镍基质上直接制备FeCo_2O_4纳米阵列材料,并通过扫描电镜(SEM)、X-射线衍射(XRD)、X射线光电子能谱(XPS)及热重分析(TGA)等手段对制备材料的形貌、结构、元素组成分布及其热稳定性能进行表征.实验结果表明,制备的FeCo_2O_4具有由纳米片层构成的纳米花阵列结构.在三电极体系及2mol/L H_2SO_4电解质中,该电极材料的比容量达1 190.47 mF·cm~(-2),当电流密度为从1 mA·cm~(-2)增加到50 mA·cm~(-2)时,其倍率性保持61.09%,在30 mA·cm~(-2)电流密度下充放电循环2 000次后其比容量保留率达到111.76%.  相似文献   

10.
采用溶胶-凝胶法制备了富锂层状材料Li1.18Ni0.15Co0.15Mn0.52O2.通过X射线衍射仪(XRD)、X-射线光电子能谱(XPS)和扫描电子显微镜(SEM)分别对材料的结构、形貌进行了分析.XRD结果表明,材料属α-NaFeO2型层状结构;XPS结果表明,材料中的Ni,Co和Mn的价态分别为+2,+3和+4价;SEM结果表明,材料颗粒尺寸分布在200~400 nm,且颗粒之间分散比较均匀,无明显的团聚现象;电化学测试结果表明,材料在使用不同电解液进行充放电时,曲线的形状相似,但是充放电容量有所不同.其中在1 mol·L-1Li PF6作为溶质,碳酸亚乙酯(EC)∶碳酸二甲酯(DMC)∶碳酸甲乙酯(EMC)=1∶1∶8(V/V)电解液作用下,材料反应更加完全、彻底,进而使得首次充电及放电容量分别为331.4 m Ah·g-1和233.6 m Ah·g-1.  相似文献   

11.
利用水热法制备了铋-钴双金属氧化物(Bi_(3.43)Co_(0.57)O_(5.9))电极材料并用于超级电容器的构建,通过X-射线衍射、扫描电子显微镜(SEM)、循环伏安法(CV)、恒电流充放电法(GCD)以及交流阻抗法(EIS)等手段对材料进行物理及电化学性能测试。结果表明:合成的Bi_(3.43)Co_(0.57)O_(5.9)作为超级电容器的电极材料具有很好的电化学性能。当电流密度在1 A/g时,Bi_(3.43)Co_(0.57)O_(5.9)电极材料的比电容为890.6 F/g;当电流密度增加至5 A/g时,比电容仍保持在705.3 F/g。10 A/g电流密度下,2 000次恒电流充放电循环后,比电容保持率高达92.3%,表明该材料具有出色的循环稳定性。  相似文献   

12.
采用改进的Hummers法合成了氧化石墨(GO),再通过水热法合成了还原氧化石墨(RGO)-InVO4纳米复合材料.采用X射线衍射(XRD)、透射电镜(TEM)和高分辨透射电镜(HRTEM)等手段对样品的组成和形貌进行了表征.分别考察了RGO-InVO4和InVO4作为锂离子电池负极材料在不同电流密度下的充放电和循环稳定性能.结果表明:RGO-InVO4电极的首次放电和充电比容量分别为1 047.5和599 mAh·g-1,而InVO4电极的首次放电和充电比容量分别为994.2和482 mAh·g-1;在不同电流密度下经过50次循环后,RGO-InVO4的放电和充电比容量分别为472.4和456.7 mAh·g-1,而InVO4的放电和充电比容量则分别为138.4和132.9 mAh·g-1.可见,RGO的引入能极大地改善InVO4的电化学性能,尤其是循环稳定性.  相似文献   

13.
用简单的水热法合成多孔纳米球NiFe_2O_4,采用SEM、EDS和XRD等方法对该材料的表面形貌和结构进行表征.利用多孔纳米球NiFe_2O_4作为光催化剂,在紫外光照射下对亚甲基蓝(MB)、罗丹明B(RhB)和甲基橙(MO)三种有机染料进行降解,并对其光催化反应机理进行了研究.此外,对多孔纳米球NiFe_2O_4的电化学性能进行了研究,当工作电极的电流密度为0.6A·g~(-1)时,比电容为309F·g~(-1).且多孔纳米球NiFe_2O_4在1500次充放电循环之后,其比电容为初始比电容的85%,表明其具有优异的电化学性能.  相似文献   

14.
将多孔TiO_2微纳米球与单质硫热处理得到含硫60%(质量分数)的TiO_2/S复合材料,采用X射线衍射(XRD)、扫描电子显微镜(SEM)和比表面积分析仪(BET)对复合材料进行结构、形貌和孔径分析,并通过电池充放电测试系统和阻抗分析仪测试样品的电化学性能.实验结果表明:在1.0~3.0V电压范围内,以0.2C、1.0C电流密度对电池进行充放电性能测试,首次放电比容量分别为718.6 mAh/g和577.7mAh/g,100次循环后对应的放电比容量分别为452.4mAh/g和426.7mAh/g,容量保持率分别为62.9%和73.8%.  相似文献   

15.
采用二次Hummers氧化法,以天然鳞片石墨为原料制备了氧化石墨烯,通过一步微波水热法将氧化石墨烯与SnCl_2原位复合制备石墨烯/SnO_2复合物.以石墨烯/SnO_2复合物为锂离子电池负极材料,研究SnO_2对石墨烯锂离子电池负极材料的影响.结果表明,SnO_2与石墨烯复合可以制备一种高比容量的负极材料,首次放电比容量高达1 581 mAh/g.在1 000 mA/g电流密度下,比容量保持率超过50%;经过大电流充放电后,在100 mA/g电流密度下,比容量保持率仍然能够达到85%.电流密度100 mA/g,循环充放电100次时,可逆容量保持率超过90%.  相似文献   

16.
以乙酸锂、乙酸锰、乙酸镍和乙酸钴为原料,去离子水为溶剂,乙醇酸作为配位剂,采用溶胶凝胶法分别在800℃、850℃、900℃和950℃烧结制备了0.5Li2MnO3·0.5Li[Mn1/3Ni1/3Co1/3]O2富锂锰基固溶体粉末.采用X射线衍射(XRD)和扫描电子显微镜(SEM)表征了不同烧结温度制备的粉末的结构和形貌;并将制备的粉末材料经过涂布,冲压等工艺,在真空手套箱中组装成扣式电池.采用电池充放电测试系统以及阻抗分析仪测试了样品的循环稳定性和电化学性能.实验结果表明:在850℃烧结的粉末样品具有最佳的电化学性能.在2~4.8V电压范围内,以0.1C大小的电流对850℃烧结的样品进行充放电测试,其首次放电容量可达240.3mAhg-1,首次库仑效率约为70%,50次循环后其可逆容量为148mAhg-1.该样品在0.2C、0.5C和1C的不同倍率下测试,得到相对应的放电容量分别为181.25mAhg-1、142mAhg-1和130.7mAg-1.  相似文献   

17.
以蔗糖为碳源,采用高温固相法制备了Fe位掺杂不同阳离子(Al 3+,Ni 2+和Mn2+)的LiFe0.97M0.03PO4/C(M=Al,Ni,Mn)锂离子电池正极材料.用X-射线衍射(XRD)、扫描电镜(SEM)、恒流充放电测试和电化学阻抗谱(EIS)等研究了不同阳离子Fe位掺杂(Al 3+,Ni 2+和Mn2+)对LiFePO4的结构、形貌和电化学性能的影响.结果表明:阳离子Fe位掺杂没有改变LiFePO4的晶体结构,但是减小了LiFePO4材料的粒径,最终改善了LiFePO4的电化学性能.特别是LiFe0.97Mn0.03PO4/C材料具有更好的电化学性能,在0.1C和1C下放电,LiFe0.97Mn0.03PO4/C材料的首次放电比容量分别为162mAhg-1和140mAhg-1,且1C充放电倍率下循环50次后容量保持率仍然为98%.  相似文献   

18.
采用简单的水热合成法制备得到了蒲公英状的NiCo2O4电极材料.用扫描电镜(SEM)、透射电镜(TEM)、X衍射测试(XRD)对样品进行了结构表征.并将其组合成超级电容器,通过循环伏安(CV)、恒电流充放电(GCD)等测试手段研究其电化学性能.测试结果表明,空心结构蒲公英状NiCo2O4电极材料,在电流密度为1 A·g-1时,电容量达到1 262.3 F·g-1,高于实心结构时的680.89 F·g-1.在5 A·g-1时,经过2 000次循环测试后,样品的电容量从1 150 F·g-1下降到1 050 F·g-1,电容保持率为91.3%,表明电极的倍率性能十分稳定.  相似文献   

19.
熔融法合成层状锰酸锂及改性研究   总被引:3,自引:1,他引:3  
采用熔融法合成了锂离子电池正极材料层状锰酸锂(m-LiMnO2),并对其进行了Cr3 的掺杂改性,优化了层状LiMnO2的合成路径及制备条件.采用X射线衍射(XRD)和元素分析对所得试样的结构进行了分析和表征.电化学性能测试结果表明层状LiMnO2具有较高的首次放电比容量(137 mA.h/g),但循环过程中容量衰减较快.m-LiMnO2掺入Cr3 后,循环性能显著提高,循环40次后仍有132 mA.h/g,说明掺杂后结构稳定性增强.  相似文献   

20.
以聚乙烯吡咯烷酮(PVP)和聚甲基丙烯酸甲酯(PMMA)为原料,通过静电纺丝法结合三步热处理工艺成功制备出多孔碳纳米纤维.采用X射线衍射、扫描电镜、透射电镜和比表面分析仪等测试方法系统地分析了PVP/PMMA不同质量比对多孔碳纳米纤维的形貌和电化学性能的影响.实验测试结果表明当PVP与PMMA质量比为3∶2时,得到的多孔碳纳米纤维的比表面积最大,可达到545.4m2·g-1,并且具有最好的电化学性能;在0.1C充放电速率下50次循环之后样品的放电比容量约为220mAh·g-1.所有由PVP/PMMA混合原料制备的多孔碳纳米纤维的比容量均高于由PVP原料制备的碳纳米纤维,并具有较好的循环性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号