首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
使用简单的化学沉积法制备出直接生长在泡沫镍上的前驱体Co(OH)2,之后经程序升温得到Co_3O_4超级电容器电极材料.通过X射线衍射、扫描电子显微镜、透射电子显微镜、傅里叶红外吸收光谱和拉曼光谱对制备的电极材料进行了表征,并进行了电化学性能测试.结果表明,生成了前驱体Co(OH)2和Co_3O_4超级电容器电极材料,形貌为由纳米片组成的网状结构.该形貌结构易于电解质渗透和电荷转移,减小了电荷转移电阻,与前驱体Co(OH)2相比,Co_3O_4的电化学性能得到显著提高.在三电极体系下,电流密度为0.75 A/g时,Co_3O_4的比电容达到820.62 F/g,且循环稳定性较好,经过1 000次充放电循环后,比电容仍为初始比电容的95.6%.  相似文献   

2.
采用简单的水热-磷化热解法合成高性能的NiCoP/石墨烯(GS)复合电极材料.采用X射线衍射、拉曼光谱和透射电镜对材料的结构进行表征.利用循环伏安(CV)和恒流充放电(GCD)对材料的电容性能进行测试.结果表明,粒径为10~20 nm的NiCoP纳米粒子均匀地负载在石墨烯上.当其作为电极材料应用于超级电容器中时,展示出良好的电化学性能,在1 A/g时,其比电容为896 F/g.5 000次循环后,其比电容保持率为87.9%.  相似文献   

3.
采用电化学共沉积技术在泡沫镍基体上直接制备掺杂Zn的Ni(OH)2电极,研究了乙醇-水体系下不同镍锌比电沉积溶液制备的电极材料的电容特性。通过XRD、SEM、EDS等测试方法对制备的电极材料进行微结构表征,并用恒流充放电、循环伏安法系统地考察其电化学性能。结果表明:所制备的电极材料为掺杂Zn的α-Ni(OH)2。当镍锌比为1∶0.0075时,循环伏安测试(扫描速率是1mV.s-1)α-Ni(OH)2电极的比电容达1906.09F.g-1。经100次恒流充放电循环后比电容衰减仅0.09%,说明电极材料具有良好的稳定性。在7.5mA.cm-2电流密度下,比电容达313.88F.g-1。  相似文献   

4.
采用简单的水热合成法制备得到了蒲公英状的NiCo2O4电极材料.用扫描电镜(SEM)、透射电镜(TEM)、X衍射测试(XRD)对样品进行了结构表征.并将其组合成超级电容器,通过循环伏安(CV)、恒电流充放电(GCD)等测试手段研究其电化学性能.测试结果表明,空心结构蒲公英状NiCo2O4电极材料,在电流密度为1 A·g-1时,电容量达到1 262.3 F·g-1,高于实心结构时的680.89 F·g-1.在5 A·g-1时,经过2 000次循环测试后,样品的电容量从1 150 F·g-1下降到1 050 F·g-1,电容保持率为91.3%,表明电极的倍率性能十分稳定.  相似文献   

5.
多金属氧酸盐由于具有快速可逆的多电子氧化还原反应特点,已成为备受瞩目的新一代超级电容器电极材料.但多金属氧酸盐易溶于水以及众多溶剂的缺点导致其循环稳定性能差、电容值偏低,制约了该电极材料的实际应用.将典型的多金属氧酸盐——磷钨酸盐通过四丁基溴化铵进行处理后,得到不溶于水的磷钨酸盐四丁基溴化铵电荷转移配合物.在三电极系统中测试其超级电容器性能,在5 A·g~(-1)电流密度下的电容值是64.1 F·g~(-1),在电流密度为15 A·g~(-1)时循环充电/放电15000次以后的电容保持率高达97%.磷钨酸盐四丁基溴化铵电荷转移配合物的循环稳定性能优于多数赝电容器电极材料,为磷钨酸盐在超级电容器电极材料方面的应用提供了一定的基础.  相似文献   

6.
氢氧化镍-炭复合超级电容器的研究   总被引:2,自引:0,他引:2  
用化学沉淀法制备出Ni(OH)2,以Ni(OH)2和活性炭为正负极组成复合超级电容器.用循环伏安法和恒流充放电实验研究了电极的电化学性能和容量性质.恒流充放电实验表明,该复合超级电容器具有良好的充放电性能及循环寿命,在6mol·L-1KOH电解液中的最大比容量可达450F·g-1.  相似文献   

7.
通过超声复合的方法将[{Cl_4Cu_(10)(pz)_(11)}{As_2W_(18)O_(62)}]·1.5 H_2O(缩写Cu_(10)As_2W_(18)),聚苯胺(PANI)和还原氧化石墨烯(RGO)进行分子自组装,成功得到了PANI@{Cu_(10)As_2W_(18)}/RGO三元复合材料.采用SEM和XRD等方法对该材料的表面形貌和结构进行表征.此外,对PANI@{Cu_(10)As_2W_(18)}/RGO三元复合材料进行了电化学性能的研究,发现当碳布作为集流体,电流密度为1 A·g~(-1)时,比电容为1232.5 F·g~(-1),且在5000次充放电循环后,其比电容为初始比电容的74.8%,优于玻碳电极(1 A·g~(-1),596.2F·g~(-1)).将其制成超级电容器,在电流密度为1 A·g~(-1)时,比电容为611.25 F·g~(-1).  相似文献   

8.
生物质衍生的多孔碳材料来源于农村生产活动的废弃物以及城市垃圾,具有资源丰富、可再生、价格低廉等优点,是一种重要的超级电容器领域的电极材料.选用莴苣叶作为碳源,通过碳化、活化等处理,制备了具有丰富孔隙结构的生物质衍生多孔碳材料.在三电极系统中测试其超级电容器性能,在0.5 A·g-1电流密度下的电容值达到196.5 F·g-1,当电流密度为10 A·g-1时,其比电容仍保持120 F·g-1.该材料具有较高的比电容及较好的倍率特性,在超级电容器上具有良好的应用前景.  相似文献   

9.
采用水热法制备了MoS_2,并用乳液法进一步将聚苯胺(PANI)与MoS_2复合,得到具有纤维网状结构的MoS_2/PANI复合材料。利用扫描电子显微镜(SEM)、傅里叶变换红外光谱(FT-IR)、热重分析(TG)和电化学测试等研究了材料的形貌、结构和超级电容性能。结果表明,MoS_2/PANI既保持了PANI纳米纤维的基本形貌,又能使MoS_2较好地分散在PANI中形成网状结构。恒流充放电结果显示,MoS_2/PANI在0.2 A·g~(-1)电流密度下的比容量高达411 F·g~(-1),远高于纯PANI;Mo S2/PANI在1 A·g~(-1)电流密度下循环300次后比容量保持率为91.7%,表现出了良好的循环稳定性。MoS_2/PANI优异的超级电容性可归因于二者的相互协同作用。  相似文献   

10.
用简单的水热法合成多孔纳米球NiFe_2O_4,采用SEM、EDS和XRD等方法对该材料的表面形貌和结构进行表征.利用多孔纳米球NiFe_2O_4作为光催化剂,在紫外光照射下对亚甲基蓝(MB)、罗丹明B(RhB)和甲基橙(MO)三种有机染料进行降解,并对其光催化反应机理进行了研究.此外,对多孔纳米球NiFe_2O_4的电化学性能进行了研究,当工作电极的电流密度为0.6A·g~(-1)时,比电容为309F·g~(-1).且多孔纳米球NiFe_2O_4在1500次充放电循环之后,其比电容为初始比电容的85%,表明其具有优异的电化学性能.  相似文献   

11.
超级电容器炭气凝胶电极材料的研究   总被引:1,自引:0,他引:1  
采用常压干燥法以间苯二酚(R)、甲醛(F)为原料制备RF炭气凝胶,用SEM对其进行表征.将水溶液化学沉淀法制得的氢氧化镍作为正极,分别采用不同催化剂含量制备的RF炭气凝胶和活性炭材料作负极,用恒流充放电、循环伏安等方法系统地考察了电极材料的电化学性能.结果表明,在恒流充放电和循环伏安测试中电极材料都表现出了良好的电容特性.常压干燥法制备的炭气凝胶呈现珍珠串式的网络结构,存在大量孔洞,随催化剂含量降低,颗粒与孔洞尺寸会明显变大,比容量和比能量减小.RF炭气凝胶作负极的比容量和比能量明显高于活性炭作负极的电容器.  相似文献   

12.
为提高混合超级电容器正极Pb O2的赝电容性能,采用温和水相沉淀法制备了纳米WO3·H2O粒子,通过复合共沉积法将WO3·H2O嵌入Pb O2镀层中,制备了Pb O2+WO3·H2O复合电极材料。采用X射线衍射(XRD)、X射线光电子能谱(XPS)、扫描电子显微镜(SEM)等分析方法对复合电极材料的组成、结构和形貌进行了表征。通过循环伏安扫描(CV)和充放电等电化学测试,对复合电极材料在超级电容器中的赝电容性能进行了研究。结果表明,该复合电极材料由β-Pb O2和WO3·H2O组成;随着WO3·H2O含量的增加,复合材料的比表面积和孔隙率随之增加;其比电容值可达到320 F·g-1,表现出了良好的赝电容性能。  相似文献   

13.
电极材料和电解液是超级电容器的两个关键因素.通过液相反应制备了纤维状纳米MnO2,X射线衍射分析表明产物是α-MnO2和γ-MnO2组成的混合晶相.利用循环伏安和恒流充放电测试其电化学性能,在0.15V~O.75V(SCE)工作电压范围内考察了在MgSO4、MnSO4、(NH4)2SO4、Na2SO4溶液中的电容性能,结果表明该电极材料在(NH4)2SO4溶液中电容性能优越,说明(NH4)2SO4溶液为纤维状纳米MnO2电极较适合电解液.讨论了(NH4)2SO4浓度对电极材料电容性能的影响,该电极材料在浓度为1mol·L-1的(NH4)2SO4中具有优异的电容性能;工作电流密度为3mA·cm-2的恒流充放测试中,其比容量可达142.2 F·g-1.  相似文献   

14.
二维过渡金属碳化物(MXene)是一种性能优异的电极材料.其中,碳化钛(Ti3C2Tx)具有较高的金属导电性、高电容性和良好的力学性能,是超级电容器电极的理想候选材料.通过可控且简单的策略制备出独立的柔性Ti3C2Tx薄膜电极,采用简单的水热法在Ti3AlC2粉末中选择性蚀刻Al制备Ti3C2Tx薄膜,并在三电极系统中测试其超级电容器性能.在电流密度为5 A·g-1时,Ti3C2Tx薄膜电极具有376.3 F·g-1的高比电容,当电流密度为50 A·g-1时,其比电容仍保持283.5F·g-1,具有良好的倍率性能.结果表明,Ti3C2Tx薄膜可作为一种优秀的高性能超级电容器电...  相似文献   

15.
电沉积法制备超级电容器电极材料纳米MnO_2   总被引:2,自引:0,他引:2  
采用恒电流、恒电位及循环伏安三种电沉积方法在石墨上从pH为5.7,浓度为0.16 mol/L MnSO_4水溶液中分别制备了具有纳米结构的超级电容器活性电极材料MnO_2.用扫描电镜测试了其结晶形貌,用电化学研究了其在不同浓度的Na_2SO_4溶液中的电容特性,计算了它们的比电容,并对测试结果进行了比较和分析.结果表明:MnO_2的形貌及性能与沉积方法有关,所合成的MnO_2的粒径大约50 nm;用恒电流沉积法制备的样品,在0.3 mol/L的Na_2SO_4溶液中比电容最高,可达306.75 F/g.  相似文献   

16.
通过一种简便的化学沉积的方法,合成了用于电化学超级电容器的纳米锰氧化物材料.采用扫描电镜(SEM)、透射电镜(TEM)和X-射线衍射(XRD)对材料的形貌及其结构进行了表征.通过循环伏安、恒电流充放电以及电化学交流阻抗等对材料的电化学性能进行了测试,结果为:所制备的材料在6 mol *L-1 KOH 的电解质体系中、在5 mV*s-1的扫描速率下具有266 F*g-1的比容量,对比文献报道值150~250 F*g-1有明显的提高,且材料具有较好的电化学稳定性和较长的循环寿命.  相似文献   

17.
采用恒电流、恒电位及循环伏安三种电沉积方法在石墨上从pH为57,浓度为016 mol/L MnSO4水溶液中分别制备了具有纳米结构的超级电容器活性电极材料MnO2用扫描电镜测试了其结晶形貌,用电化学研究了其在不同浓度的Na2SO4溶液中的电容特性,计算了它们的比电容,并对测试结果进行了比较和分析结果表明: MnO2的形貌及性能与沉积方法有关,所合成的MnO2的粒径大约50 nm;用恒电流沉积法制备的样品,在03 mol/L的Na2SO4溶液中比电容最高,可达30675 F/g  相似文献   

18.
通过液相共沉淀法及高温热解法制备了裂开球形氧化镍氧化铜复合物.采用了X射线衍射光谱(XRD)、扫描电子显微镜(SEM)及透射电子显微镜(TEM)表征了该材料的结构.采用恒流充放电法研究了制备的NiO-CuO复合物在6 mol·L-1KOH溶液中的电化学行为.实验结果表明:这种裂开球形复合氧化物由氧化镍、氧化铜组成.该材料在1 A·g-1的电流密度下所得复合氧化物单电级比电容为735 F·g-1,并且在580次充放电循环后,容量保持率为98%,远远高于氧化镍(351 F·g-1)和氧化铜(262 F·g-1)的比容量.  相似文献   

19.
KOH活化对超级电容器用活性炭的影响   总被引:1,自引:0,他引:1  
以普通活性炭为原料,KOH为活化剂,在不同的工艺条件下制备了活化活性炭,并组装成单体超级电容器,考察了碱炭比、活化时间、活化温度对活性炭材料比电容的影响.电化学性能测试结果表明:采用KOH活化效果显著,在最佳的工艺条件下,循环伏安法测得活性炭的比电容从活化前的161.9 F·g-1提高到202.8 F·g-1,恒流充放电测得在30 mA条件下其比电容从活化前的92.4 F·g-1提高到118.0 F·g-1.粒径分布和SEM测试结果表明,活化活性炭颗粒粒径变小,粒径分布变窄,颗粒表面出现了许多新孔,呈现疏松的蜂窝状,这使活化后活性炭具有大的比表面积和高的比电容.  相似文献   

20.
利用水热和后热处理的方法,在不锈钢片上制备了Co_3O_4纳米线阵列,并作为阳极应用到锂离子电池上。结构和形貌表征发现,Co_3O_4纳米线为多孔结构,由大小为20~40nm的Co_3O_4颗粒构成。电化学特性测试表明,Co_3O_4纳米线阵列电极具有良好的循环稳定性和优异的倍率特性,在890mA/g的电流密度下,可逆容量为1 300mAh/g,循环150次后,库伦效率保持在99%以上。分析指出,多孔纳米结构不但使活性物质Co_3O_4能够充分与电解液接触并反应,有效地适应材料在充放电过程中的体积变化,而且减小了锂离子和电子在其中的输运距离。同时,在集流体上直接生长活性物质,它们之间具有良好的电接触,有利于电子通过界面的快速传输。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号