首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
在TiO2(P25)粉末中分别加入各种添加剂,经研磨后得到TiO2浆料,采用涂刮法制备TiO2纳米晶薄膜光阳极,并组装成染料敏化太阳能电池(DSSC).采用扫描电子显微镜(SEM)、紫外-可见光光度计(UV)和光电流密度-电压(J-V)对样品进行形貌表征和光电性能测试,探索了浆料制备工艺对DSSC光电性能的影响.实验结果表明,依次缓慢添加各种添加剂,且各添加剂的研磨时间分别为20min时,制备的浆料可制成疏松多孔的TiO2纳米晶薄膜,其光电转化效率可以达到8.6%.  相似文献   

2.
目前二维IV-VI族窄带隙半导体材料在存储开关、太阳能转换、热电转换和近红外光电器件等领域受到了广泛关注.其中硒化锡(SnSe)和二硒化锡(SnSe2)作为典型的IV-VI族窄带隙半导体,由于其优异的电子和光电性能成了研究热点.目前,制备SnSe和SnSe_2薄膜通常需要使用两套气相沉积系统,而制备SnSe_2纳米片更是需要通过化学气相沉积的方法才能获得,因此面临制备成本高、可控性低的问题.该文提供了一种气相沉积方法,一步制备了SnSe和SnSe_2薄膜,大大提高了制备效率.该方法只需要控制加热温度,制备过程简单可控.通过一系列的表征手段证明,制备的SnSe薄膜和SnSe_2薄膜十分纯净.  相似文献   

3.
由于独特的结构、优异的光电性能等多种优点,二维(2 D)材料在新型光探测器的应用方面受到了广泛的关注.该文采用超声辅助液相剥离方法成功制备了二维二硫化钛(TiS2)纳米片,并且对其形貌和微观结构进行了表征.将二维TiS2纳米片作为光阳极,构建了光电化学型(PEC)光电探测原型器件;研究发现其零偏压下的光电流密度可达42...  相似文献   

4.
采用脉冲激光沉积法制备了表面均匀,具有混合相的铁酸铋Bi Fe O3薄膜材料;利用原子力显微镜(AFM)以及纳米力学性质成像技术(QNM),对铁酸铋薄膜材料在纳米尺度下进行机械力学调控及调控后力学的性质进行了研究。通过研究证实,Bi Fe O3薄膜材料中纯四方相在AFM探针施加力的调控下,能实现纯四方相到混合相及菱形像的转变;并通过测量转变后各区域的杨氏模量,进一步证实了转变的发生。该研究提供了一种室温条件下机械压力对Bi Fe O3薄膜材料在纳米尺度下进行调控的方法,为未来其在纳米尺度下的潜在应用打下了基础。  相似文献   

5.
激光扫描光电显微镜   总被引:1,自引:1,他引:0  
本文报道了利用半导体材料和器件光电导效应研制成功的一种新型成象检测系统——光电显微镜.并用该显微镜对几种MOS功率管和TTL集成电路进行了静态和动态检测,其结果说明光电显微镜不但可用来检测各种集成电路(包括大规模集成电路)的静态缺陷,更重要的是可用于探查器件在工作情况下的逻辑状态、电荷分布及失效分析等,从而为分析集成电路提供一种非接触式、非破坏性、能用于常温常压的方便有效的检测方法.  相似文献   

6.
采用脉冲激光沉积法制备了多铁性铁酸铋(Bi Fe O3)薄膜材料,通过原子力显微镜(AFM)对其表面形貌和压电响应性质进行了表征。同时,利用基于原子力显微镜的定量纳米力学成像技术(QNM)对铁酸铋薄膜材料纳米尺度的力学性质进行研究,突破了传统力学性质测量设备低空间分辨率的限制,获得了Bi Fe O3薄膜材料中菱形相和四方相的杨氏模量。  相似文献   

7.
采用溶胶-凝胶旋涂法在表面氧化的Si (100)基片上制备了La1-xCaxMnO3 (x=0,0.1,0.15) 薄膜.利用X射线衍射(XRD)、原子力显微镜(AFM)、扫描电镜(SEM)及振动样品磁强计(VSM)对样品的结构、形貌和磁性进行了研究.结果表明:薄膜为正交钙钛矿结构,具有平整的表面,La0.85Ca0.15MnO3样品的薄膜厚度为334 nm.样品在居里温度附近发生铁磁-顺磁转变,随着Ca2+掺杂浓度的增加,样品的居里温度变大,x=0.15时,样品的居里温度为299 K.  相似文献   

8.
α-In_2Se_3是一种同时具有稳定面内和面外极化的窄禁带二维铁电材料,探究其铁电极化与光电导性能关联对促进其光敏传感器的应用具有重要意义.该文采用微机械剥离法获得了平面尺寸在50μm以上的α-In_2Se_3纳米片,利用原子力显微镜研究了其自发极化特性.制备了Pt/α-In_2Se_3/Pt光敏器件单元,研究了明暗条件下Pt/α-In_2Se_3/Pt器件单元I-V特性以及高压极化对光敏性能的影响.结果表明:二维层状α-In_2Se_3具有较好的光敏性能,且高压极化将大幅优化器件的光敏特性.高压极化使器件的响应时间明显缩短, 1 V电压明暗条件开关比提高至10~3以上.可见,铁电极化对于α-In_2Se_3纳米片的光电导效应具有重要影响,高压极化操作能够有效地提高其光敏性能.  相似文献   

9.
氧化铪基薄膜与金属氧化物半导体(CMOS)工艺高度兼容,具有良好的可微缩性和保持性能,其铁电性的发现引起了科学家们的广泛关注.该文通过化学溶液法在铂(Pt)衬底上制备5 mol%和10 mol%的铈掺杂氧化铪基(Ce:HfO_2)薄膜,并在不同的退火温度条件下对薄膜进行处理.分别利用电滞回线,掠入射X射线衍射(GIXRD)对薄膜的铁电性能和结构进行了测试和表征.研究发现:5 mol%的铈掺杂氧化铪薄膜具有铁电性,铈掺杂在氧化铪中诱导了铁电正交相;10 mol%的铈掺杂氧化铪薄膜则表现出了反铁电性,最大剩余极化(P_r)为21.02μC/cm~2.实验结果表明,通过调控掺杂浓度,铈元素能诱导出氧化铪薄膜中的铁电相.  相似文献   

10.
掺氮类金刚石薄膜的微观结构和红外光学性能研究   总被引:3,自引:0,他引:3  
采用俄歇电子能谱、原子力显微镜、拉曼散射分析、傅里叶红外光谱和红外椭圆偏振光谱等设备,对射频等离子增强化学气相沉积法制备的掺氮类金刚石薄膜的微观结构和红外光学性能进行了研究.结果表明,薄膜中氮含量随工艺中氮气/甲烷流量比的增加而增加并趋于饱和.光谱中CH键吸收峰(2859~3100cm-1)逐渐消失,而且CNH键(1600cm-1)、C≡N键(2200cm-1)和NH键(3250cm-1)对应的红外吸收峰强度随氮含量的增加而增加.拉曼散射中G峰向小波数方向位移和峰值展宽的现象说明薄膜中形成了非晶的氮化碳结构,与原子力显微镜显示的薄膜中富氮的非晶纳米颗粒相对应.偏振光谱分析认为,富氮纳米颗粒的存在导致了薄膜在红外波段折射率由1.8降低到1.6.  相似文献   

11.
采用生物仿生的方式,利用多巴胺在玻片表面自聚合的特性,在玻片表面构建一层聚多巴胺薄膜。其自身含有的醌式结构,易于同带有活性官能团的生物分子发生化学反应而将生物分子固定到玻片表面。构建一种经济高效、绿色环保、操作简便的生物分子固定化平台,并与传统的固定方式进行对比。通过扫描电镜,红外光谱仪及荧光显微镜等对聚多巴胺薄膜进行表征。结果表明,制备薄膜由15~20nm的纳米颗粒构成,因此制备薄膜具有更高的比表面积及更小的空间位阻,利于提高探针的固定量及效率。通过荧光显微镜成像及Image J软件统计分析,与传统的制备方法比较,该固定方法能够提高固定探针的数量及荧光强度,因而该方法优于传统的固定方法,在生物芯片载体表面修饰方面具有广阔的应用前景。  相似文献   

12.
利用涂覆提拉法从钴镍的TiO2反胶束纳米溶胶中制备钴镍共掺TiO2纳米薄膜,用原子力显微镜(AFM)和紫外-可见光谱对钴镍共掺TiO2纳米薄膜的形貌和光谱性质进行表征测试.结果表明,钴镍共掺扩宽了TiO2的光响应范围,提高了光学活性,掺杂1.5%钴镍的TiO2薄膜的平均粗糙度和比表面积最大以及紫外可见光吸收最强.热处理发现,与500C热处理温度相比,700C热处理的钴镍共掺TiO2薄膜有优越的光学活性.  相似文献   

13.
设计并实现了一种新颖高效的制备CsPbBr_3纳米材料的实验方法 .首先通过一种简单的溶液法获得CsPbBr_3,并采用扫描电子显微镜(SEM),X射线衍射图谱(XRD)对其形貌和结构进行了表征.将其作为光敏材料,对其进行光探测性能测试发现,CsPbBr_3具有较好的光响应性以及较大的光电流,其响应上升时间和响应下降时间分别是1.325s和0.754s,光电流在5V偏压,0.9mW的光强下是14.11μA/cm~2.除此之外,可以发现I-V曲线是线性的,而且无论是在有光还是无光的情况下,电流都是随着偏压增大而增大,有光时的电流大于无光时的电流.因为光照时,CsPbBr_3材料的内部会产生大量的光生电子空穴对,从而会增加材料中的自由电子的数目,最终导致光电流变大.光照变强时,其电流大于弱的光照强度,这是因为光照强度变强时,照射到材料表面上和接收的光能量就会变得更加的多,从而导致了电流的增加.这项工作表明,所制备出的CsPbBr_3光探测器具有良好的光电特性,并为将来开发其他含有CsPbBr_3材料的实际应用提供了一种思路和更加积极的证明.  相似文献   

14.
采用Sol-Gel(溶胶-凝胶)法在Pt/Ti/SiO_2/Si基片上制备了约200 nm厚的PZT(锆钛酸铅)铁电薄膜,然后用氩离子束对PZT薄膜进行刻蚀.研究了不同的离子束刻蚀工艺参数(如离子束入射角θ、屏级电压U_s和氩气流量F_(Ar))对PZT薄膜刻蚀速率及表面粗糙度的影响.采用原子力显微镜(AFM)对PZT薄膜的表面微观形貌和表面粗糙度值R_q(均方根值)和R_a(算术平均值)进行测试和分析,通过探针式表面轮廓分析仪测量刻蚀深度d并计算出刻蚀速率V_(etc).结果表明:刻蚀速率V_(etc)严重依赖于离子束入射角θ,在0~75°的θ范围内呈类抛物线关系;当θ为45°时,刻蚀速率达到最大值.随着F_(Ar)和U_s的增加,V_(etc)与两者分别呈成正相关关系,且越来越大.表面粗糙度值R_q和R_a随F_(Ar)和θ的改变而变化,在7 sccm、45°时会有最优值出现;而随屏级电压U_s的增加,在800 V处表面粗糙度值最低.  相似文献   

15.
采用电沉积方法,以ITO/TiO2薄膜为基底,在水体系中成功制备出ITO/TiO2/CdS复合半导体薄膜,通过光电流作用谱考查了该薄膜电极的光电性能。实验表明,电镀液的组成、实验温度可影响薄膜中CdS纳米粒子的生长,从而使不同条件获得的复合薄膜电极的光电转换效率不同,实验温度为40℃、电镀液的组成为CCd2 =0.02 mo.lL-1,CS2O23-=0.10 mo.lL-1,pH=2.0条件下沉积所得的ITO/TiO2/CdS薄膜电极,在400 nm~500 nm波长范围内具有较强的光吸收,也有较高的光电转换效率。  相似文献   

16.
GaFeO_3(GFO)是一种同时具有室温铁电和低温亚铁磁性的单相多铁材料,且其磁性转变温度可以通过调节Fe元素含量提高至室温,具有广阔的应用前景.研究发现,室温下Ga_(0.6)Fe_(1.4)O_3薄膜具有铁电性和弱磁性,但是由于薄膜的漏电流较大,制约了其实际应用.采用溶胶-凝胶法结合旋涂工艺成功制备了Mg掺杂的Ga_(0.6)Fe_(1.4)O_3薄膜,薄膜厚度约为100 nm,并对Ga_(0.6)Mg_xFe_(1.4-x)O_3(GMFO)薄膜的铁电性尤其是漏电性能进行了表征.研究结果表明:Mg离子掺杂的薄膜样品在室温下表现出铁电性,当x=0.05时,薄膜具有相对而言优良的铁电性能,矫顽电场强度(E_c)为25 kV/cm,剩余极化强度(P_r)为4.89μC/cm~2;适量Mg离子的掺杂可以使薄膜的漏电流密度降低2个数量级,x=0.05时,对应薄膜的漏电流最小,漏电流密度在10~(-1)~10~(-5) A/cm~2范围内.随着Mg离子掺杂含量的继续增加,薄膜的漏电流密度逐渐变大.压电力显微技术(PFM)测试结果表明,GMFO薄膜的力电耦合主要来自于薄膜的线性压电信号.GMFO薄膜具有室温弱磁性,当x=0.05时,薄膜具有最大的剩余磁化强度为9.8 emu/cm~3.该实验结果对于提高GFO多铁材料的性能,从而实现纳米器件的应用具有重要的指导意义.  相似文献   

17.
研制了一套半绝缘半导体光电导率(PC)和光霍尔特性(PH)测试系统。应用该系统测量了多种类型SI-GaAs体单晶室温和77K的光电导特性及典型样品的室温光霍尔特性,对获得的谱线特征从Cr和O能级的角度作了分析讨论。  相似文献   

18.
运用LBL法将同多酸Na4W10O32(简记为W10)和聚阴离子PEI沉积到多层膜中,进而制得{PEI/[W10/PEI]n/W10}多层薄膜,用UV-vis光谱监测整个膜增长过程,并研究了多层膜修饰的ITO电极的电化学性质.以具有分析价值的化合物NaNO2为底物,研究了多层膜的催化性质,并通过安培计时法进行了进一步的研究.研究结果表明,多层膜对NO2-具有优良的电催化性能,且具有较低的检出限和较高的灵敏度.作为一种原料简单、制备简易的复合膜电极,有望在传感器领域得以应用.  相似文献   

19.
最近,在氧化铪薄膜材料中掺杂适量元素发现了铁电性,因为氧化铪薄膜材料与传统的钙钛矿结构铁电材料相比具有可微缩性化、较大的矫顽电场、与CMOS后端工艺高度兼容等优势,从而引起了广泛的关注.该文对应用于铁电场效应晶体管(FeFET)的存储介质Hf_(0.5)Zr_(0.5)O_2(HZO)基铁电薄膜的制备进行了研究.采用原子层沉积法(ALD)制备HZO基铁电薄膜,研究了不同厚度(9 nm、19 nm、29 nm)、不同顶电极(TaN、Pt),以及不同退火温度(450~750℃)对HZO铁电薄膜的铁电性能的影响.结果表明,选用TaN作为上电极,退火温度为550℃时,19 nm厚氧化铪铁电薄膜表现出更加优异的铁电性能.同时,表征了HZO铁电薄膜的保持和疲劳性能,以及HZO铁电薄膜在高低温环境下的稳定性.  相似文献   

20.
采用化学气相沉积法合成了ZnO纳米线,并对其进行了扫描电镜以及光致发光表征.基于ZnO纳米线,采用微栅模板法制备了光电器件及背栅场效应晶体管.利用半导体参数测试仪测量了ZnO纳米线的I-V特性、光响应特征及场效应管的输出特性等.实验表明,ZnO纳米线具有良好的紫外光敏感度,预示了良好的光电探测应用前景及FET的应用可能性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号