首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
借助于控制体热平衡和熵平衡导出换热过程Yong损失率方程,利用换热过程的Yong损失率方程得到了3种天然制冷工质(氨、二氧化碳、丙烷)和常用卤代烃制冷工质在不同换热方式下的综合特性,并在相同换热模式下进行分析比较.结果表明,上述几种天然工质(尤其是氨)其流动与传热的综合性能优于R22,R500和R114等几种常用的卤代烃工质.  相似文献   

2.
为了研究换热器螺旋管的冷凝传热性能,对R22制冷剂使用VOF模型在螺旋直径为300mm、螺距为19.52mm、管道直径为9.52mm的换热器螺旋管进行了数值模拟,分析了换热器螺旋管的流场分布特性,研究了流体流速和饱和温度对螺旋管内换热性能的影响。通过实验研究了不同参数对螺旋管内换热性能的影响,对数值模拟的准确性进行验证。实验结果表明,在不同流体流速时冷凝换热系数的模拟数据与实验数据之间的相对误差为3%-11%,在不同饱和温度时冷凝换热系数的模拟数据与实验数据之间的相对误差为3%-8%,说明数值模拟方法和结果是合理的。该研究为螺旋管换热器的设计优化以及空调热水器一体机的节能损耗给予了一些参考。  相似文献   

3.
R134a作为喷射制冷循环的工质可获得较高循环性能,但因其具有较高全球变暖潜能值(global warming potential,GWP),所以将逐步被限制使用或被新型绿色环保制冷剂所替代。本文提出以低GWP值的R1234yf作为喷射制冷循环工质,建立了喷射制冷循环热力学数学模型。分析了以R1234yf、R134a和R600a为工质的喷射制冷循环喷射器的喷射因数、制冷量和性能因数随着蒸发温度、冷凝温度和发生器出口温度的变化关系。研究结果表明:相同的工况下,采用R1234yf为工质喷射制冷循环可获得最高喷射器喷射因数和最大制冷量,但以R1234yf为工质喷射制冷循环所获得性能因数(coefficient of performance,COP)较R134a低7.0%,比R600a高20.2%。综合评价认为:R1234yf为工质的喷射制冷循环性能优于R600a,且与采用R134a为工质的喷射制冷循环性能相当。  相似文献   

4.
对新型替代工质R134a在水平强化管外的核态池沸腾换热进行了实验研究.查明了热流密度、蒸发压力和沸腾换热系数的关系,拟合了适合于本强化管的沸腾换热系数计算式.并对R22和R134a在强化管外池沸腾换热的特性进行了对比.  相似文献   

5.
烟道气的冷凝传热与脱硫的实验研究   总被引:5,自引:0,他引:5  
实验研究了锅炉烟气在轴流式塑料螺旋板空气预热器中的传热特性.与圆管内和圆形套管内层流单相对流换热进行了比较.具有烟气冷凝的对流换热研究反映冷凝换热与单相对流换热具有同等重要性,与纯蒸气冷凝换热有明显不同,也不同于湿空气去湿过程.采用修正后的古典膜模型对烟气冷凝的计算与实验结果有较好的一致性.伴随烟气冷凝,烟道气中所含SO2和NO2被冷凝液吸收,降低了有害气体浓度.  相似文献   

6.
水平冷凝强化传热管的传热性能   总被引:2,自引:0,他引:2  
以R11为工质,测试了饱和蒸汽状态下水平冷凝强化传热管-低肋管、C管、以及双侧强化传热管GC管的传热性能。并与同工况条件下测得的光管传热性能进行了比较。实验结果表明,被研制的GC管总传热系数比光管提高4倍多;而相应的管内侧冷却水流动阻力系数平均为光管的7倍多。最后运用熵分析法对水平冷凝强化传热管的强化传热性能进行了评价,结果表明GC管的强化传热性能优于DAC管(另一双侧强化传热冷凝管)等水平冷凝强  相似文献   

7.
不凝气体存在时水平管束冷凝换热特性的试验研究   总被引:6,自引:0,他引:6  
通过对水平管束管间冷凝换热特性的试验研究,探讨并分析了冷却水流量以及不凝气体质量分散对管束冷凝换热的影响规律和机理。试验结果表明,当有不凝气体存在时,冷凝放热系数最小值并不一定发生在最低排管上,冷凝放热系数最小值与冷却水流量和不凝气体质量分散均有关。研究结果为凝汽器的进一步传热强化研究提供了依据。  相似文献   

8.
R22饱和蒸气在水平双侧强化管外凝结换热的实验研究   总被引:4,自引:0,他引:4  
对氟里昂制冷工质R22在水平单管外的凝结换热性能进行了实验研究.传热管分别采用光管、低肋管及6根不同几何参数的双侧强化高效传热管.试验结果表明:强化管内侧强化换热效果为光管的2倍左右,管外凝结换热系数是光管的5~7倍.在冷凝温度为40℃、管内冷却水流速范围为0.5~3.2m/s时,各强化管总的传热系数是低肋管的1~2倍,是光管的4~6倍  相似文献   

9.
水平新型微肋管内流动冷凝换热及流阻特性   总被引:1,自引:0,他引:1  
为研究微肋管结构尺寸及工况等对管内流动冷凝性能的影响,采用R22为工质对4种结构的微肋管和1根Ф9.52mm光管进行了实验.根据实验结果分析了质量流速、微肋结构尺寸和管径等对冷凝换热性能的影响.实验结果表明,两根Ф9.52mm微肋管的换热系数分别比光管提高了90%和120%,而其内表面积只比光管增加了40%和70%.  相似文献   

10.
借助于控制体热平衡和熵平衡导出换热过程火用损失率方程 ,利用换热过程的火用损失率方程得到了 3种天然制冷工质 (氨、二氧化碳、丙烷 )和常用卤代烃制冷工质在不同换热方式下的综合特性 ,并在相同换热模式下进行分析比较 .结果表明 ,上述几种天然工质 (尤其是氨 )其流动与传热的综合性能优于R2 2 ,R5 0 0和R114等几种常用的卤代烃工质  相似文献   

11.
在自行设计组装的基于朗肯循环的低温余热发电模型的基础上,以CFC11为工质,进行了介电流体的EHD强化凝结换热的实验研究,得出了不同温度下凝结换热系数,热流密度与外施电压之间的关系,并对外施电场的功耗进行了分析,为EHD冷凝强化换热理论研究的扩展提供了一定的依据.  相似文献   

12.
报道了R-12蒸气在三维内翅管中的流动冷凝实验,结果表明:与光滑面相比,R-12蒸气在三维内翅管中的凝结换热系数增加了107%,而流阻只增加了18%,并对此进行了相应的分析,建立了预测传热性能和流阻的关联式。  相似文献   

13.
Conservation equations of sensible entarnsy and latent entransy are established for flue gas convective heat transfer with condensation in a rectangular channel and the entransy dissipation expression is deduced. The field synergy equation is obtained on the basis of the extremum entransy dissipation principle for flue gas convective heat transfer with condensation. The optimal velocity field is numerically obtained by solving the field synergy equation. The results show that the optimal velocity field has multiple longitudinal vortices, which improve the synergy not only between the veloctiy and temperature fields but also between the velocity and vapor concentration fields. Therefore, the convective heat and mass transfers are significantly enhanced. Flow with multiple longitudinal vortices close to the optimal velocity field can be generated by discrete double-inclined ribs set in the rectangular channel. The numerical results show that the total heat transfer rate in the discrete double-inclined rib channel increases by 29.02% and the condensing heat transfer rate increases by 27.46% for Re = 600 compared with the plain channel.  相似文献   

14.
在均质表面上的单个球缺形液滴换热模型和液滴通用尺度分布规律的基础上,结合梯度表面能材料表面上的液滴分布和凝结换热特性,得到了圆形径向梯度表面能材料表面上的滴状凝结换热计算式.在此基础上,研究了壁面过冷度、接触角梯度、工质物性等参数对梯度表面能材料表面滴状凝结换热性能的影响.  相似文献   

15.
板式换热器中蒸汽凝结换热特性   总被引:8,自引:0,他引:8  
在板式换热器的蒸汽凝结换热试验台上进行了实验研究,获取蒸汽完全凝结和部分凝结两种典型工况下的换热和压降特性.且就板式换热器中蒸汽凝结过程的换热进行分析和处理,得到了一个在板片槽道中蒸汽凝结换热系数关联式.并推荐用于板式换热器的蒸汽凝结换热系数的计算.  相似文献   

16.
通过试验研究确认了将普通型板式热交换器用于水—水蒸汽凝结放热具有显著节能效果。分析了在板式热交换器中,在水蒸汽的高速流动下水蒸汽凝结换热系数与蒸汽流速、蒸汽压力、冷凝温差之间关系,获得了求解凝结换热系数的关联式,也分析了顺、逆流对压降及水蒸汽凝结放热系数的影响。  相似文献   

17.
本文在V型纵槽管冷凝传热研究的基础上,进行了Cosine型纵槽管的传热研究.在理论分析与实验研究的基础上得到了传热系数和传热面积的计算公式.对所得结果比较后,作者建议以单位温度差传热速率进行这一类纵槽管的传热计算及作为评价其传热效果优劣的判据.这种作法较之过去的传统作法(传热系数法)远为优越.  相似文献   

18.
Acid condensation rate is an important factor denoting the acid corrosion, and the reduction of the acid condensation can significantly relieve the acid corrosive effect on the wall surface and improve the security of the equipments. In this study, the characteristics of both heat transfer and acid condensation of the finned tube in heat exchanger were numerically studied. In the numerical model, we simulated the acid condensation by considering the vapor-liquid equilibrium effect and multi-component diffusion effect. Based on the H-type finned oval tube, we proposed three novel types of fins to both enhance the heat transfer and reduce the acid condensation. The parametric effects of gas temperature, acid vapor concentration, water vapor concentration, and Reynolds number were investi- gated on different fin structures. The results show that the tube bank with the new structured fins can improve the performance on both heat transfer and acid anticondensation.  相似文献   

19.
存在温度梯度的竖直壁面Marangoni 凝结换热特性研究   总被引:2,自引:0,他引:2  
对水-酒精混合蒸气在表面存在温度梯度的竖直壁面上的Marangoni凝结换热特性进行了实验研究,并观测了混合蒸气的凝结形态.实验结果表明:凝结表面不同位置的换热系数不同,温度梯度大的位置凝结换热系数较大;当酒精蒸气的质量分数wv=0.5%,1%时,凝结换热系数随过冷度单调减小;当wv≥2%时,凝结换热系数与过冷度的关系为含有最大值的非线性特性关系;在相同条件下,wv=1%时的凝结换热系数最高,wv=0.5%时的次之,wv≥2%以后,凝结换热系数随酒精含量的升高而减小.与仅由浓度梯度引起的Marangoni凝结相比,本实验中由浓度梯度和温度梯度共同驱动的凝结换热更强.初步的理论分析也表明,凝结表面上的浓度梯度和温度梯度共同作用使水-酒精凝结液表面的表面张力梯度增大,Marangoni对流加强,凝结换热进一步强化.  相似文献   

20.
为探讨新的强化凝结换热的方法,考虑多孔层界面液体间的剪切效应,建立了蒸气在具有多孔涂层倾斜表面膜状凝结换热的物理数学模型。数值计算结果表明:在一定范围内,表面过冷度、多孔涂层的厚度、渗透率和有效导热系数的增大都不同程度地强化凝结换热,表面倾角引起的彻体力的变化对强化凝结换热的影响很大。与Nuselt理论预示值对比显示:多孔涂层具有明显的强化膜状凝结换热的作用,而多孔层的弥散作用是强化凝结换热的主导因素。多孔涂层特征参数的优化研究可为进一步的实验研究提供理论指导。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号