首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
为实现具有超低功耗且稳定可靠的上电复位电压输出,提出了基于电平检测的具有零稳态电流的新型上电复位电路,该电路由电平检测电路、状态锁存电路和欠压检测电路组成,通过在上电复位之后切断电平检测电路的电源实现复位稳定后的零稳态电流,其输出复位电压的状态由状态锁存电路锁存.该电路采用0.18μm Bi-CMOS工艺设计,电源电压为1.8 V.Cadence Spectre的仿真结果表明,该电路在上电复位结束后的稳态仅有数纳安的漏电流,起拉电压和欠压检测电压受温度影响很小,因而适用于集成到超大规模片上系统(SoC)芯片中.  相似文献   

2.
提出了一种新型的高性能过压检测电路的设计.对带隙基准模块的设计原理和一种无需比较器模块和带隙基准启动电路的过电压检测电路进行了详细分析,电路结构的优化设计有效地降低了电路的实现成本.仿真结果表明此电路检测精度高,当温度在-25~85 ℃范围内变化时,门限电压变化仅为11.7 mV.  相似文献   

3.
检测电路是交流伺服控制系统的重要组成部分,由电流、电压及位置检测电路组成,完成系统信号如电机的直流母线电压、电机的定子相电流、电机转子的位置等获取工作.分别设计了电机定子相电流的采集电路及处理方法、电机直流母线电压采集电路及电机转子位置检测电路与初始位置定位方法,并对设计的电路进行了实验分析.模拟实验结果表明整个系统具有较好的动态响应和稳态精度,从而验证了文中设计的检测电路的可行性.  相似文献   

4.
本文介绍了一种用单片机控制电机恒定转速的方法.电压的高低直接由单片机控制,先检测当前转速,再与设定的转速比较,如果转速偏低则提高输出电压,反之降低电压.文中介绍了硬件电路的整体设计和局部电路的设计;并介绍了软件设计的相关内容.  相似文献   

5.
由于电动汽车驱动电机频繁地运行于启停车、加减速等复杂工况,因此对控制系统的开发要求较高.针对此问题,设计了一种适用于电动汽车驱动电机控制系统的电路.在介绍控制系统硬件电路结构基础上,给出了功率电路、驱动电路、电压电流检测电路和测速电路的参考设计,分析了直流电压采样电路及交流电流采样电路的输入输出信号关系.最后,通过15 kW的电动汽车平台对所设计的电路进行了实验验证.  相似文献   

6.
设计了一种基于MC56F8367和LTC6802芯片为核心的电池管理系统,给出了系统的硬件设计,其中包括:电压采集,电流采集以及通信电路等,提高了电池电压电流检测精度,缩短检测时间,并设计双向分流均衡电路和过充过放保护电路,提高了电池管理系统数据采集的精度以及系统运行的稳定性.  相似文献   

7.
一种自适应峰值检测电路的设计   总被引:1,自引:0,他引:1  
针对传统闭环峰值检测电路不能准确检测出每一个峰值的缺点,设计了一种自适应峰值检测电路. 利用输入信号的斜率作为控制信号,控制采样保持电路实现峰值检测. 该电路确保检测与峰值同步,对峰峰时间间隔不定的信号都能够准确检测出每一个峰值,并具有检测误差小、电压下降率低等优点. 设计采用CSMC 0.5 μm工艺,在5 V电源供电下,检测误差小于0.3 mV,电压下降率小于1.68 μV/μs,应用频率范围20 Hz~1 KHz,最小可分辨峰峰时间间隔为5 μs,整体电路功耗14.7 mW.  相似文献   

8.
为了解决目前市场上电源变换器宽电压输入功率因数和功率均较小,而功率大、高功率因数的电源变换器要求输入电压范围又很小的问题,将主要用于PFC控制电路的芯片FAN9672应用于大功率升压变换电路,设计一款新型电源变换器.给出电路构成框图及各单元电路的详细设计方式,论述了整机工作过程,并进行了电路参数测试.检测结果表明,该电源变换器具有宽电压输入、大功率、高功率因数的特点.  相似文献   

9.
单节锂离子电池保护电路的改进   总被引:1,自引:0,他引:1  
提出了一种低成本的单节锂电池保护回路系统,采用0.6μm混合信号CMOS工艺和修调技术使芯片具有低功耗、高精度检测电压等特点.通过基准电路和取样电路设计的改进,使保护电路实现了多种保护功能,并且具有很高的检测电压精度.模拟结果表明,该电路在温度为25℃时过充电保护电压的检测精度达到了±25mV,耗电流仅为3.5μA,满足高精度检测电压的要求.  相似文献   

10.
根据改变IGBT门极驱动电阻可以改变其开关速度的特性,设计出通过改变门极驱动电阻使IGBT串联有效均压的一种方案.此方案利用三极管、电阻、稳压管构成电路拓扑.当IGBT过压或接近过压时,通过检测电路将集射极电压反馈给门极驱动电阻选择电路,驱动电阻选择电路增加门极驱动电阻,从而改变集射极电压变化的速率,使得IGBT均压.仿真分析表明,此串联均压电路能够有效地平衡串联IGBT的电压.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号