首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 502 毫秒
1.
随着各国应对气候变化措施的陆续出台,特别是中日韩和欧洲多国提出到本世纪中叶实现碳中和的目标,氢——未来的绿色燃料,正在受到各国追捧。进入2020年以来,全球宣布了总额超过1500亿美元的绿氢项目。欧洲氢能组织预测,全球氢工业到2050年的年营业额将达7000亿美元。俄罗斯财政部估算,届时全球氢能年消费量将达1.5亿~1.6亿吨。  相似文献   

2.
在调研分析国内外氢能基础设施的基础上,设计了4条适合我国近期发展燃料电池汽车加氢网络的氢能路径,使用全生命周期评价方法,核算了燃料电池汽车在这4条氢能路径下的能耗和污染物排放.计算结果表明:工厂焦炉煤气制氢在4条制氢路径中的能效最高,能耗和温室气体排放最低.氢气运输距离对能耗与排放有较大影响.通过对比分析,建议我国近期应优先采用工厂焦炉煤气制氢;在远离炼焦工业但天然气资源相对丰富的地区,应采用工厂天然气蒸汽重整制氢;当氢气运输距离过长时,可采用现场天然气蒸汽重整制氢;在可再生能源资源丰富地区,应优先使用可再生能源发电进行工厂电解水制氢.  相似文献   

3.
在“双碳”背景下,氢能的利用成为解决能源供应并降低温室气体排放总量的措施之一。工业副产氢是一类来源广泛、生产成本低廉且潜在市场可观的氢气。然而,大规模存储设施和相应物流供应链缺乏,终端市场开拓不足,阻碍了工业副产氢的有效利用。该文在氢气可大规模存储的背景下,以盐穴收储化工厂副产氢为商业模式,研究了该商业模式下化工厂和盐穴的供应链管理决策。通过对盐穴储氢量变化、盐穴-化工厂氢气交换的动态过程等详细建模,将供应链管理决策过程整合成一个混合整数非线性优化问题。针对所提优化问题的特点,结合遗传算法和线性规划商业求解器得到最优解;通过实例分析了供应链管理决策优化带来的经济效益及其对参数的灵敏度,得出了产量和运输距离如何影响化工厂运输路径和运输方式的一般性结论,并对市场需求变化对售氢收益的影响进行了研究。研究结果表明:所提模型可为盐穴-化工厂副产氢供应链中各参与者的决策提供依据,所提商业模式可为化工厂和盐穴提供新的收入来源,并能减少工业废气排放,提高资源利用率。  相似文献   

4.
加氢反应过程及其氢耗是炼厂氢气资源高效、合理利用的关键。为了获得变工况条件下加氢处理过程中氢耗与全流程参数变化的耦合关联,将硫化物、氮化物和芳烃各分为4个集总,采用ASPEN Plus对蜡油加氢工艺全流程进行模拟,采用某炼化企业的蜡油加氢处理装置操作参数与原料产品性质对模拟结果进行验证。在全流程模拟的基础上,对蜡油加氢处理装置在原料硫含量和加工负荷变工况条件下氢耗进行了计算和分析。研究表明:利用反应动力学的全流程模拟所得氢耗随加工负荷的变化趋势与经验关联式所得结果一致,氢耗随原料硫含量的变化较经验关联式更接近实际生产。基于流程模拟的基础数据可以为工艺流程中加氢反应氢耗计算提供更深入的理解。  相似文献   

5.
餐厨垃圾中有机物含量高,以沼渣为产氢菌种来源,利用餐厨垃圾为原料研究厌氧发酵制备氢气,研究通过热处理沼渣对餐厨垃圾厌氧发酵产氢的影响。结果表明,餐厨垃圾是理想的厌氧发酵产氢底物,热处理能够有效的抑制耗氢微生物的活性,提高产氢气浓度。未加热处理发酵产气量大,氢气最大浓度为29%;100℃加热处理15 min发酵产氢气最大浓度为38%,产气量大;100℃加热处理30 min发酵产氢气最大浓度为35%,产气量下降。以餐厨垃圾为发酵底物微生物产氢发酵的最佳p H值为5.0~6.0。  相似文献   

6.
根据兰州石化公司甲乙酮装置副产氢气的组成,对比深冷法、膜分离法和吸附法等三种氢气提纯方法,认为,吸附法比较适合兰州石化公司甲乙酮装置副产氢气的提纯。并且对吸附法的工艺情况进行了介绍,确认提纯后的氢气能满足炼油厂加氢装置的要求。  相似文献   

7.
本文主要从氢的制取、氢的物化特性、应用现状以及对发动机性能和排放的影响等几个方面进行介绍。经分析发现,从目前看,氢能源的来源及加氢网络将制约氢燃料汽车的推广;但从长远看,无论考虑资源还是考虑环保,氢燃料汽车都具有广阔发展的前景,而发展和利用氢能的技术很可能成为解决能源危机的最终方案。  相似文献   

8.
氢能是可持续的二次清洁能源, 产业链主要包括氢气的制取、储存、运输和应用等环节. 燃料电池是氢能利用的主要方式, 处于产业链的核心地位. 以氢能产业链为主线, 围绕氢能燃料电池产业化进展, 对制氢、储氢、加氢站、氢能燃料电池电堆及关键材料, 以及车用燃料电池系统关键部件的技术特征、产业化进展、发展现状及存在的挑战进行了概述, 尤其对中国燃料电池产业链的发展现状进行了重点介绍. 为了加速氢能与燃料电池真正意义上的产业化, 还提出了几点需要克服挑战的研发方向.  相似文献   

9.
生物质与煤共气化制取氢气的试验   总被引:2,自引:0,他引:2  
采用单一流化床二步气化方法,在流化床中用纯水蒸汽做气化剂进行生物质与煤共气化制取氢气的工艺试验.研究了反应温度、生物质与煤的质量比值、水蒸气和生物质的质量比值m(S)/m(B)等参数对产氢量的影响,同时考察不同工作条件下的焦油质量浓度.通过对气体成分和产率的试验分析计算出氢气的实际产量和最大产量.试验结果表明,反应温度和水蒸气量是提高氢气实际产量以及潜在产量的重要参数.当反应温度区间在950~1 000 ℃,m(S)/m(B)为0.9,生物质与煤的质量比值为4/1时,每千克无灰干基生物质和煤的实际产氢量为68.25 g,潜在产氢量最大值可达138.01 g.  相似文献   

10.
科学家们展望,氢气将成为新世纪的新能源,氢原子将取代碳原子。那末,氢在哪里? 氢就蕴藏于浩瀚的海洋之中。我们知道,海洋的总体积约为13.7亿立方公里,若把其中的氢能提炼出来,就有1.4×10~(17)吨。可见氢能是取之不尽用之不竭的。电解水即可分解成氢和氧。 氢能源的最大优点是:一是资源丰富;二是对环境几乎没有危害,作为燃料燃烧时只生成水;三是氢的燃烧值高,每公斤氢燃烧后能放出142.35千焦耳热量,约为汽油的3倍,酒精的3.9倍。 氢作为燃料面临的主要问题是成本问题,目前生产的氢,其成本比生产相同能量的汽油贵3倍。但专家们认为,由于氢能绝对有利于环境,所以即使  相似文献   

11.
Hydrogen energy and polymer electrolyte membrane (PEM) fuel cells become concerned issues in recent years. Nevertheless, the construction of hydrogen refueling infrastructure and hydrogen storage and transportation constrains the commercial development of fuel cells. In this review, sources, production, storage, transportation, and purification methods of hydrogen are extensively reviewed and compared. The advantages of utilizing industrial by-product hydrogen and steam reforming gas in PEM fuel cell systems are analyzed. Using industrial wasted hydrogen can significantly reduce the cost of hydrogen. Also, it is indicated that the onboard hydrogen generation by steam methanol reforming can solve the difficulties of efficient storage and transportation of gaseous hydrogen, which means that methanol has great potential to be a convenient carrier of hydrogen. The effects of impurities contained in the reformate gas are generally introduced. After the methanol steam reforming and pretreatment purification processes, the reformate gas can be fed to PEM fuel cells. Thus, a fuel cell system integrated with onboard hydrogen production and impure hydrogen treatment subsystems is introduced, and key technologies therein for pretreatment purification and in-situ poisoning mitigation methods are reviewed. Finally, suggestions are proposed for further studies.  相似文献   

12.
液氨做为一种含氢质量分数为17.6%的富氢物质,是氢能的理想载体.从目前氢气存储和运输的瓶颈问题出发,设计了以液氨为储氢和输氢载体的供氢方案,并以单位质量的氢气供应成本做为评价指标,对该路线与天然气、电解水和甲醇裂解制氢供氢路线进行了经济性的比较分析.结果表明,在中等制氢规模和近距离运输的模式下,氨载氢供氢方案一次投资单位供氢成本仅为51.2元.kg-1,明显低于其他制氢路线,具有较强的经济性和技术可行性.  相似文献   

13.
汽车燃料的生命周期评价模型   总被引:10,自引:0,他引:10  
以国际标准化组织的生命周期评价标准为依据 ,确定了汽车燃料生命周期清单分析参数和评价边界 ,提出了燃料上游阶段清单的计算逻辑 ,给出了模型的主要计算公式 .对氢燃料生命周期和汽油燃料生命周期进行了清单计算和结果比较 ,发现制氢方案是影响燃料电池车的燃料生命周期环境性能的关键 ,天然气制氢和石脑油制氢的氢能供应方案能使燃料电池车的燃料生命周期环境排放比汽油车低  相似文献   

14.
随着碳减排政策的不断推进,氢气因其高能量密度和低碳排放特性被视为一种理想的能源,并广泛应用于化工原料制备、移动出行、电力生产以及工业和家庭用热等领域,而燃烧是目前氢能利用的重要方式之一。基于此,通过对比氢气与天然气的物理化学特性,详细分析和探讨了氢气燃烧过程中存在的各种类型的回火、热声振荡以及氮氧化物排放超标问题发生的原因和解决方法;而后,概述了氢气催化燃烧和微尺度燃烧在工业脱氢、家庭供热和微机电系统等领域的应用现状和发展方向;最后,结合目前世界各国天然气掺氢燃烧的发展现状和我国天然气管网的相应标准,指出我国发展天然气掺氢燃烧的优势和关键问题,总结了氢气燃烧技术的发展现状与发展趋势。  相似文献   

15.
氢动力汽车和电动汽车在中国的应用前景分析   总被引:3,自引:0,他引:3  
为了分析电动汽车和氢动力汽车在中国的应用前景,使用从油井到车轮的生命周期评价方法,对以煤基原料提供动力的电动汽车和氢动力汽车的循环的生命周期化石能消耗和温室气体排放进行了对比。结果表明:从全生命周期的角度看,未采用CO2捕集与封存技术时,电动汽车在生命周期化石能消费和温室气体排放方面优势明显。随着CCS技术的大规模商业化,氢动力汽车的全生命周期温室气体排放将优于电动汽车,但这需要以生命周期化石能消费的增加为代价,中国政府有必要加大对电动汽车的关注。  相似文献   

16.
以典型钢铁生产企业为研究对象,基于企业实际生产数据,采用物质流分析法(MFA),构建物质代谢模型.建立了能源、资源利用和污染物排放分析指标,定量描述了钢铁企业的资源能源消耗及烟粉尘排放情况.结果表明:企业层面,高炉-转炉长流程吨钢总资源消耗量为208.6 t,燃料能消耗量占能源消耗总量的93.9%,吨钢烟粉尘排放量为648.08 g,烧结和炼铁工序贡献最大,分别占总排放量的45%和36%.电炉短流程总资源消耗量为1.31 t,电能消耗量占能源消耗总量的96.7%,吨钢烟粉尘排放量67 g.工序层面,烧结、炼焦和炼铁三个主排放工序的排放量分别为222.50 g/t烧结矿、118.20 g/t焦、245.27 g/t铁.据此,提出企业节能减排和产业结构调整的方向性建议,以减少环境压力,实现钢铁企业的可持续发展.  相似文献   

17.
介绍了利用煤炭、石油、天然气生产甲醇的发展历程,阐述了甲醇合成工艺条件的选择,并简要介绍了甲醇生产过程中的重要技术——膜分离氢回收工艺。  相似文献   

18.
辽宁省滨海城市水资源可持续利用研究   总被引:5,自引:3,他引:2  
利用模糊模式对辽宁省滨海城市水资源开发程度进行了识别评价,得出其级别特征值为1.763 2,开发程度处于一级和二级之间,接近水资源的承载能力;同时,利用灰色系统建立GM(1,1)和GM(1,2)模型,对滨海城市旱灾、城市人口、生活用水量和用水总量进行预测,预测在2004年和2009年左右,将可能再次出现干旱,到2010年和2020年人口将分别达到720万和910 万,到2010年城市的生活用水量将达到4.46亿t,用水总量将达到9.8亿t,辽宁省滨海城市水资源的供需矛盾将进一步加剧.  相似文献   

19.
过氧化氢改善柴油机燃烧试验研究   总被引:2,自引:0,他引:2  
采用过氧化氧组液参与柴油机燃烧,可以改善柴油机燃烧过程,使油耗与排放同时降低.从实用角度设计并开发了一种过氧化氢组液供给系统,并在135柴油机单缸机上进行了试验研究.试验结果表明过氧化氢组液消耗量与雾化空气流量成正比,同时受环境温度及湿度的影响;过氧化氧组液改善内燃机燃烧的效果显著;比油耗降低9.5%、碳烟烟度降低ZO%、NOx排放降低3.6%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号