首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
纳米SiO和CaCO3对超高性能水泥基复合材料的影响   总被引:1,自引:0,他引:1  
系统研究了双掺纳米SiO2和纳米CaCO3对超高性能水泥基复合材料力学性能的影响规律,采用水化热分析、XRD、MIP和纳米压痕等多种微观分析测试手段对其水化进程及微结构进行了研究.结果表明,双掺纳米材料可进一步提升材料的各项力学性能,纳米CaCO3的最佳掺量为3%~5%.纳米SiO2的高反应活性促进了早期水泥水化的进程,与水泥水化产物Ca(OH)2反应产生C-S-H凝胶,纳米CaCO3主要起到了填充增强和晶核的作用,二者共同作用下,使得复合材料结构更为密实,孔隙率进一步降低,孔径得到细化,超高密度C-S-H凝胶大量生成,界面区得以强化,异常均匀致密的微观结构使得复合材料在宏观上体现出优异的力学性能.  相似文献   

2.
利用纳米SiO2(Nano-SiO2,NS)可以促进聚合物水泥基材料水化,提升其力学性能、改变其水化产物微观形貌及界面过渡区(Interface Transition Zone,ITZ)性能等特点,采用电液式压力试验机、水泥胶砂干缩比长仪、X射线衍射技术(X-ray Diffraction,XRD)、扫描电镜(Scanning Electron Microscope,SEM)、X射线能谱仪(Energy Dispersive Spectrometer,EDS)及显微硬度试验等各种宏观与微观测试手段相结合的方法对NS改性聚合物水泥基材料的力学性能、干缩性能、水化产物微观形貌与组成及ITZ相关性能进行研究.结果表明:掺加NS后,大大提高了聚合物水泥砂浆的力学性能,尤其对早期强度提高更为明显.随着NS的掺入,聚合物水泥砂浆干缩率增大,在早期干缩现象更加明显;NS加入改变了聚合物水泥基材料水化产物的数量及C-S-H凝胶微观形貌及组成,促进了聚合物水泥基材料的水化并且降低了C-S-H凝胶的钙硅比.对于ITZ性能,NS掺入使得聚合物水泥硬化浆体-骨料ITZ形貌变得更加致密,减少了ITZ明显的裂缝和孔洞,并且ITZ水化产物丰富密集,C-S-H凝胶明显增多,显微硬度升高.  相似文献   

3.
研究纳米SiO2对硅酸三钙(Ca3 SiO5,简称C3S)基骨水泥性能的影响.结果表明:纳米SiO2的掺入,可以加快C3S的水化进程,但延缓了浆体的凝结.纳米SiO2与Ca(OH)2反应生成较低n(Ca)/n(Si)的CSH凝胶,降低了固化体中Ca(OH)2的含量.纳米SiO2与Ca (OH)2反应生成的CSH凝胶呈网络交织状结构,既可对固化体起到密实填充作用,又可增强固化体的胶凝性能,从而提高固化体的力学性能.固化体中Ca(OH)2的含量随纳米SiO2掺入量增加而降低;当SiO2掺入量达到6%时,固化体中CSH凝胶的平均n(Ca)/n(Si)开始降低.  相似文献   

4.
为了更好地研究和表征水泥基材料的微观结构及形成机理,对水泥净浆及掺粉煤灰的水泥浆体进行了微观力学性能研究.应用纳米压痕技术测试、分析并计算了不同浆体中各个区域的弹性模量和硬度,并对各参数在二维平面的分布进行了描绘.同时,利用高斯函数对弹性模量、硬度的频率分布曲线进行了多峰拟合,获得水化产物中毛细孔、高密度C-S-H凝胶...  相似文献   

5.
利用XRD和SEM等现代检测手段,研究了纳米SiO2(NS)与P.Ⅰ型硅酸盐水泥均匀混合制成的纳米复合水泥的性能,探究水泥水化过程受NS影响的规律性.结果表明:NS的加入量和N型纳米复合水泥标准稠度的关系呈递增变化函数,且缩短其凝结时间;NS不仅对水化产物的形成有诱导作用,加速其水化过程,促进C-S-H凝胶生长和合理分布,而且还具有火山灰活性,与Ca(OH)2反应生成二次水化物,降低水泥砂浆骨料界面中的Ca(OH)2(CH)晶体取向程度,从而使硬化水泥砂浆中的水化产物紧密排列,形成密实的网络显微结构,其孔隙率减少,机械强度提高.性能优良的纳米复合水泥NS最佳掺量为2%.  相似文献   

6.
基于亚稳态四方相ZrO_2纳米颗粒的纳米微集料效应,将其应用于改性水泥基复合材料。利用X射线衍射仪(XRD)、场发射扫描电镜(FESEM)和低场核磁共振波谱仪表征了纳米氧化锆与水泥净浆的微观结构与形貌,研究了ZrO_2纳米颗粒的掺量、粒径和晶型对水泥基复合材料水化过程的影响规律。结果表明:在水泥净浆中掺入ZrO_2纳米颗粒,将增加标准稠度用水量,促进水泥净浆溶胶向凝胶的转变,增加C—S—H凝胶含量,提高水泥石密实度,对水泥基复合材料微观结构有较明显的改善。  相似文献   

7.
再生混凝土力学性能较差,无法广泛应用,在预先浸泡再生骨料的基础上,将辅助胶凝材料纳米硅溶胶(1%,3%, 5%)与粉煤灰(10%, 15%, 20%)复合掺入再生混凝土中制备了改性再生混凝土。通过抗压强度、劈裂抗拉强度、坍落度试验探究了辅助胶凝材料对再生混凝土综合使用性能的影响;并在微观层次上揭示了辅助胶凝材料对再生混凝土性能影响的作用机理。结果表明,两种材料复合掺入后的协同作用使再生混凝土的力学性能、工作性能得到了全面提升,经试验测得纳米硅溶胶与粉煤灰的最佳复掺量分别为3%, 15%,其90 d抗压强度和劈裂抗拉强度最多提升50.5%, 73.6%,坍落度保持在165 mm左右。微观表征显示复掺两种材料加快了水泥水化反应,降低了水泥浆体的钙硅比,并由此增加了C-S-H凝胶含量;絮凝状C-S-H凝胶紧密包裹着水化产物,填充了混凝土内部的孔隙和裂缝,优化了界面过渡区结构,再生混凝土的强度得到显著提升。  相似文献   

8.
采用超声波分散方式将纳米CaCO_3掺入水泥基材料,研究了不同掺量纳米CaCO_3对水泥基材料性能与结构的影响,并利用X射线衍射和扫描电镜分析其影响机理.结果表明:掺入纳米CaCO_3后,水泥基材料流动度降低,浆体表观密度增大,抗折和抗压强度提高.纳米CaCO_3掺量为1.5%(质量分数)时,对水泥基材料的力学性能提高最为显著,纳米CaCO_3掺量过多则不利于强度发展.纳米CaCO_3的掺入会加速水泥的水化,早期使水化产物Ca(OH)_2等增加;纳米CaCO_3改善了界面结构和水泥石结构,使水泥基材料的结构变得更加均匀密实.结果显示纳米CaCO_3掺入后对水泥基材料的力学性能与结构有利.  相似文献   

9.
不同于传统水泥基材料水化硬化特点,本研究旨在探讨纳米非晶态水化硅酸钙(C-S-H)的接触硬化胶凝性能.分别采用了两种不同来源的C-S-H粉体,对其在20~60MPa压力下恒压3min进行压制成型,测定成型试件的表观密度和力学性能,并结合成型前后微观结构的变化探讨C-S-H的接触硬化胶凝机理.结果表明,纳米C-S-H具有良好的接触硬化胶凝性能,能在几分钟时间内制备出轻质高强试件.表观密度约为800kg/m3的试件,其抗压强度可达20~30.5 MPa.微观结构表明,C-S-H颗粒在外力作用下发生粘性流动而使颗粒间距减小至引力范围并发生接触,颗粒的细化和塑性变形促进了结构键的生成,从而使试件具较高强度.  相似文献   

10.
矿渣硅酸盐水泥水化反应的理论模型与应用   总被引:1,自引:0,他引:1  
提出了一种矿渣硅酸盐水泥水化反应的理论模型,考虑了矿渣成分、熟料成分、矿渣掺量、矿渣水化程度对其水化产物成分和微观结构的影响,可以定量地预测C-S-H凝胶的成分和浆体不同组份的相对比例.与普通硅酸盐水泥浆体相比较,矿渣硅酸盐水泥浆体最主要的差别是Ca(OH)2含量显著降低、C-S-H的钙硅比明显降低,同时孔隙率也不断增加.  相似文献   

11.
将纳米CaCO3 进行表面改性 ,制备了纳米CaCO3 PVC复合材料。用透射电子显微镜观察纳米CaCO3 改性前后及纳米CaCO3 PVC复合材料的微观结构。结果表明 ,表面改性后纳米CaCO3 在PVC基体中达到了纳米级的分散 ,对PVC复合材料有显著的增韧作用 ,复合材料的缺口冲击强度达到 41 2kJ/m2 。此外 ,还研究了纳米Ca CO3 PVC的流变性能  相似文献   

12.
利用X射线衍射分析、扫描电子显微镜、化学结合水量测定以及胶砂实验等方法研究了钢渣粉和钢渣水泥复合粉的活性和水化机理,研究结果表明:钢渣硬化浆体中的矿物组成含有水化产物C-S-H凝胶和Ca(OH)2,钢渣残余矿物C2F、Ca2(Fe,Al)2O5、CaCO3和RO相,和一些未反应的胶凝矿物C2S和C3S;钢渣、水泥和钢渣-水泥浆体三者的水化产物种类类似,微观结构形貌存在差异;14 d后掺钢渣水泥净浆试样的化学结合水量与水泥差距缩小,28 d后化学结合水量实测值大于计算值;钢渣掺量(质量分数)小于30%时,钢渣水泥胶砂的28 d强度高于水泥胶砂的28 d强度。  相似文献   

13.
通过混合、熔融挤出,把纳米CaCO3填充到聚丙烯PP基体中去,制得高强度低成本的PP改性复合材料。对该复合材料进行了力学性能测试和微观结构的观察,并对纳米CaCO3改性PP的增韧机理进行了讨论。实验结果表明,纳米CaCO3填充PP用量在12份时,对PP复合材料有明显的增韧增强作用,而且可有效地降低原料成本18%~25%。  相似文献   

14.
生活垃圾焚烧炉渣集料的胶凝特征   总被引:2,自引:0,他引:2  
为研究垃圾焚烧炉渣集料(BAA)的胶凝特征,以强度试验分析BAA的水硬性和火山灰活性,并采用X射线荧光光谱仪、X射线衍射仪和扫描电子显微镜分析微观作用机理.结果表明,BAA含有水泥熟料矿物和活性SiO_2、Al_2O_3,体现出水硬性和火山灰活性特征.BAA中水泥熟料矿物遇水发生水化反应生成水化硅酸钙(C-S-H)凝胶和Ca(OH)_2,活性SiO_2、Al_2O_3在Ca(OH)_2激发作用下发生火山灰反应生成C-S-H凝胶、水化硅铝酸钙等水化产物;BAA与水泥、水混合后,除上述反应外,活性Al_2O_3在硫酸盐激发下也发生火山灰反应生成钙矾石.BAA在水泥中的火山灰反应有一定延后性.湿法处理、长时间堆放BAA的胶凝活性分别较干法处理、短时间堆放BAA低.  相似文献   

15.
借助环境扫描电镜(ESEM)对纤维表面以及15,30,50μm不同宽度裂缝自愈合产物的生长过程进行了连续观察,结合EDS(energy dispersive spectroscopy)、TEM(transmission electron microscopy,透射电镜)、XRD(X-raydiffraction)及FTIR(fourier transform infrared spectroscopy)等先进研究手段,对工程水泥基复合材料(ECC)裂缝自愈合产物的化学特性进行了分析.结果表明,体系中水泥基材料的进一步水化及C-S-H凝胶和CaCO3晶体的生成是裂缝自愈合的主要原因.宽度15μm裂缝的自愈合产物主要为C-S-H凝胶;宽度30μm裂缝的自愈合产物主要为C-S-H凝胶和CaCO3;观察周期内,宽度50μm形成的自愈合产物量无法填满裂缝.从微观层次上看,宽度30μm以下的裂缝几乎都能完全自愈合.同时,ECC材料中的PVA(聚乙烯醇)纤维有亲水特性,为自愈合产物的形成提供了成核点,有助于ECC材料自愈合产物的形成和生长.  相似文献   

16.
以内掺粉煤灰制成的混凝土和普通硅酸盐水泥以及抗硫酸盐水泥制成的混凝土作为研究对象,在硫酸钠溶液中进行干湿循环后,通过对相对动弹性模量,重量损失率的测量,说明掺加粉煤灰的混凝土对硫酸盐侵蚀有较好的抵抗性能;通过对混凝土宏观照片和SEM微观形貌的分析,说明掺加粉煤灰能够与混凝土内部的不利成分Ca(OH):发生二次水化反应,生成有利的C-S-H凝胶,有效改善混凝土的微观结构.  相似文献   

17.
探究不锈钢渣尾泥-矿渣对水泥水化性能的影响,既可解决废渣利用率低且污染环境问题,又能促进建材行业向绿色发展.首先研究了3种原材料的矿物组成和粒度组成,再将两种废渣复掺到水泥熟料中,发现当不锈钢渣尾泥掺量在10% ~20%,矿渣掺量在10% ~30%,两者任比例复掺到水泥熟料中,28 d抗压强度均超过了42.5 MPa.综合热分析定量发现两种废渣能相互激发活性,早期水化反应不明显,后期逐渐增强.微观分析发现试样水化产物主要是未水化的C2 S、C3 S和Ca(OH)2,少量的C-S-H凝胶和AFt晶体,并且后期Ca(OH)2的含量是影响强度的主要因素.  相似文献   

18.
为了研究界面改性和温度对织物增强混凝土(Textile Reinforced Concrete,TRC)界面性能的影响,分别采用环氧树脂、硅烷偶联剂及纳米二氧化硅(SiO2)对纤维表面进行处理,并通过电镜扫描和拔出试验测试处理后纤维微观形貌和TRC试件在25 ℃、100 ℃及200 ℃ 下的宏观力学性能 . 试验结果表明:纳米 SiO2 浸渍和环氧树脂涂层均明显改善碳纤维束在水泥基体中的界面黏结性能 . 纳米 SiO2颗粒能浸入纤维束内部,改善内部纤维丝与基体间的应力传递,同时纳米SiO2与氢氧化钙反应生成水化硅酸钙凝胶,提高其黏结性能. 硅烷偶联剂处理可以增加纤维表面粗糙程度,提高纳米 SiO2 在纤维表面的附着量,从而进一步提升纤维与基体的界面黏结强度. 在100 ℃ 和200 ℃ 下纳米 SiO2浸渍的碳纤维束界面强度显著高于环氧树脂浸渍的. 本研究将为TRC力学性能设计和热稳定性提升方法提供参考.  相似文献   

19.
为了探究纳米CaCO3对混凝土力学性能的影响规律,试验取掺量分别为0%、1. 5%、2. 0%、2. 5%、3. 0%、3. 5%的纳米CaCO3,分析不同掺量的纳米CaCO3对不同龄期混凝土抗压强度的影响,并采用扫描电子显微镜(SEM)对纳米CaCO3增强混凝土的微观结构进行分析,然后基于随机骨料模型结合内聚力本构关系,在细观层次上分析纳米CaCO3对混凝土力学性能的影响,将试验与模拟结果进行对比,验证模型的正确性与适用性。结果表明:纳米CaCO3的掺入可以提高混凝土的抗压强度,但并非掺量越高越好,最优掺量为2. 0%,3、7、14、28 d龄期抗压强度增长率分别为3. 93%、5. 21%、4. 99%、7. 84%;采用SEM分析表明,纳米CaCO3的掺入可以减少混凝土内部的裂缝和孔隙,改善混凝土的微观结构。试验与数值模拟结果具有良好的一致性,各组工况相对误差均在10%以内。  相似文献   

20.
针对普通水泥基材料存在早期强度低、抗变形能力弱等问题,通过纳米硅溶胶对水泥基材料进行改性,采用电液伺服万能试验机、X射线衍射及扫描电镜等手段对纳米硅溶胶改性不同水灰比水泥基材料的流动性、结石率、单轴抗压强度、弹性模量、水化产物及微观形貌进行研究。结果表明:硅溶胶掺量在0.5%以内、水灰比小于1.0时可显著提高水泥浆液的流动性,最大提高20.24%;结石率随着纳米硅溶胶掺量的增加而增大,且硅溶胶对水灰比大于0.7浆液的结石率提高明显,最大提高24.49%;当硅溶胶掺量为2%时,结石体的抗压强度增幅最大且随着养护龄期的增加,硅溶胶对试样强度的增幅效果逐渐减弱;纳米硅溶胶的掺入促进水泥基早期的水化反应,与水化产物反应生成水化硅酸钙凝胶(C—S—H)并使微观形貌更加致密,使结石体的早期抗压强度及弹性模量显著提高;纳米硅溶胶通过缩短诱导期以及在颗粒空隙中为C—S—H提供成核位点促进水化反应,提高水泥基材料性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号