首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 232 毫秒
1.
基于差分形式的用于计算一定环境CO浓度及暴露时间下人体血液中碳氧血红蛋白饱和度的Coburn-Forster-Kane方程(CFK方程),结合不同形式横向通风隧道CO浓度分布特性,拟合了适用于正常运营工况下CO浓度限值计算式,对于送风型半横向通风隧道给出事故通风CO浓度指示值计算式.计算结果显示全横向通风隧道与送风型半横向通风隧道可采用同一CO浓度限值,排风型半横向通风隧道可采用三倍该CO浓度作为限值.  相似文献   

2.
射流风机已在公路隧道、铁路隧道及地铁通风中被广为应用.正确的进行射流风机的空气动力设计可以提高通风装置效率,降低隧道通风的运营成本.通过对射流风机的空气动力特性分析,论证了射流风机叶轮所产生的静压仅仅是用于克服风机本身的内部流动阻力,与改善隧道内通风状态无关.指出在进行射流风机空气动力设计时,应使得其叶轮产生的静压尽可...  相似文献   

3.
对铁路双线隧道通风的空气动力特性:射流风机的组合特性、活塞风的影响、有害气体浓度分布和稀释原理等进行了分析研究。  相似文献   

4.
根据大气扩散方程建立了公路隧道内空气质量方程和方程中相关参数,并导出了计算自然通风、纵向通风、全横向通风和半横向通风隧道内空气污染物浓度分布的解析解.实例计算了中国3座营运公路隧道内的CO浓度值与其实测浓度值之间有良好的线性关系,其相关系数的平方R2在0.849 9~0.923 1之间.  相似文献   

5.
为了降低隧道施工时产生的粉尘对施工人员身体健康的危害以及对施工机械的磨损,以新建中兰(中卫—兰州)铁路香山隧道DK052+415~DK054+500施工段为依托工程,对施工期间斜井段通风方案进行了优化。利用Fluent仿真模拟分析了施工段射流风机距隧道中线距离、射流风机风速、射流风机距挂布台车距离、射流风机高度对隧道除尘效果的影响,采用正交试验法研究了风机距挂布台车距离、风机距隧道中线距离及风机风速对除尘效果的影响程度,并对射流风机的布置方案进行了比选优化。结果表明:隧道中两台车处会出现粉尘浓度升高的现象,隧道中安装射流风机辅助通风可以降低两台车附近粉尘浓度;风管和射流风机布置在同侧时,风机的除尘能力会由于两者之间的摩擦而降低;风机风速对射流风机的除尘能力具有积极影响;风机距台车距离和风机高度均存在最优值,过大或者过小都会降低射流风机的除尘效果;射流风机最佳布置方案为风机距挂布台车35 m,风机距隧道中线2 m,风机高度2 m,风机风速40 m/s;极差分析法和方差分析法均表明射流风机除尘效果的最大影响因素为风机风速,各因素对两台车附近粉尘浓度影响的重要性顺序由大到小为风机风速、风机距...  相似文献   

6.
五女峰隧道纯射流方式通风设计   总被引:2,自引:0,他引:2  
通过对五女峰隧道通风方案的分析 ,为其确定了较为经济合理、施工方便的纯射流风机纵向通风方案  相似文献   

7.
应用CFDesign软件,对公路隧道纵向通风系统中的沿程损失、汇流损失和风机射流作用进行了数值模拟研究.讨论了C.FColebrook公式的适用性和汇流损失、射流风机的影响因素,得出了一些可供设计应用的有益结论.  相似文献   

8.
为实现对地下停车库 CO( Carbon Monoxide) 气体浓度自动检测和调节,设计了基于 TMS320F2812 的地下车库通风控制系统。该控制系统主要由 4 部分组成: 集中控制器、数据采集与执行器、通信模块和现场控制装置。集中控制器采用微控制器控制现场装置,统一调整所有诱导通风风机的集中控制模式及参数。数据采集 与执行器主要包括 CO 浓度传感器和微处理器,其中微处理器接收上位机的指令,并负责参数的设定,CO 传感器实时检测 CO 浓度,并通过显示装置动态显示。现场控制装置由继电器、诱导风机、报警器及 12864 显示屏组成。实验结果表明,通过智能控制诱导射流排风的方法可取得很好的节能效果,为地下车库通风自动化的发展提供了理论依据。  相似文献   

9.
利用数值模拟方法研究分析了混合通风和碰撞射流通风供暖时,高大空间内的热环境及污染物浓度分布特征.结果表明,两种热风供暖方式在高大空间内形成的气流形态完全不同,导致污染物的空间分布也有很大差别.碰撞射流通风时,不同类型污染物(CO2和2.5μm颗粒物)在房间内都能均匀分布,而混合通风时,两者在房间内的分布极不均匀且表现出不同的分布特征,CO2集中分布于房间中部,2.5μm颗粒物则集中分布在远离外墙的近地面区.碰撞射流通风比混合通风更有利于污染物的排除.此外,送风温差对混合通风房间内污染物的分布特征有明显影响,但对碰撞射流通风基本没有影响.  相似文献   

10.
本文采用单点测试和连续测试2种方法,针对3条自然通风和2条机械通风公路隧道使用TSI7575-X型空气品质仪和KIMO-VT200型风速测试仪开展现场实测,获取隧道内温度、风速、CO和CO2浓度分布状况,并采用实测结果与已有的理论模型进行对比验证.结果表明:活塞风存在于所有隧道内,但机械通风隧道的活塞效应优于自然通风隧道;从入口到出口,所有隧道的温度、CO和CO2浓度均上升;隧道内风速主要依赖于车速(vt)和开口率(Rf),最大CO浓度随车速的降低和隧道长度的延长而增大,但受开口率的影响较小;CO的安全浓度标准依赖于人员暴露时间,在20km/h和1 700辆/h车道条件下,所允许的隧道长度可达到3 000 m.  相似文献   

11.
汽车尾气的主要成分是CO气体,是公路隧道通风设计的一项重要参数。准确、快速地预测隧道内CO气体浓度,能够为隧道通风控制提供有力参考,有助于CO气体浓度的及时控制,对保障隧道内人员的健康、安全和隧道绿色节能十分必要。采用公路隧道实地监测CO气体浓度数据,建立了以监测点位置、交通量、车速、风速为输入特征的公路隧道CO气体浓度预测随机森林模型。通过整理3 300 m长隧道CO气体浓度数据,对比了CO气体浓度实测数据与模型预测值,验证了模型的预测精度。结果表明,基于随机森林建立的CO气体浓度预测模型具有良好的预测精度,能够准确地预测隧道内CO气体浓度,测试集的均方根误差(root mean square error, RMSE )和决定系数(R2)分别为0.4974和0.9437;该预测模型性能显著优于线性回归模型和支持向量机模型;预测模型能够推广应用于其他隧道的CO气体浓度预测,对应的RMSE和R2分别为0.9095和0.7295,可以在已知测点位置、交通量、车速、风速的情况下预判隧道内CO气体浓度,为隧道通风控制或安全预警提供数据参考;特征重要性分析结果显示,测点位置对隧道内CO浓度的影响最大,在隧道出口处CO气体浓度值最高;随着风速的增大,隧道内CO气体浓度逐渐减小。  相似文献   

12.
采用CFD方法监测了上海地铁一号线人民广场站站台火灾环境下,采用事故风机+站台空调通风与回风+站台下侧排烟的强制通风、不同屏蔽门开启方式对烟气温度场、CO分布及浓度的影响.结果表明:着火6 min时,强制通风可使站台楼梯口温度Tavg<50.73℃,[CO]avg<150 ppm,并基本消除CO由站台层向站厅层的扩散;部分开启屏蔽门可实现站台层烟气向站台隧道的抽吸,增加站台安全撤离区域.结果同时指出站台层至站厅层个别楼梯口的温度、风速及风向尚未完全达到地铁设计规范要求,需要进一步分析原因.  相似文献   

13.
推导并验证了无风墙辅扇通风的相对有效压力方程及有关特性方程;定义了用于判断是否需设特别混合室的下临界风阻R_d 和需设风墙的上临界风阻 R_u;给出了用风机类型特性方程系数表达的最优辅扇出口断面计算式;指出:无因次特性方程系数 B=0.5 的风机适合于此种方式的通风。现场实验证实,B 接近0.5的 K45系列风机用作无风墙铺扇通风,与用JF型风机相比,能耗降低到一半以下。  相似文献   

14.
为研究隧道施工通风过程中风筒破损对一氧化碳(CO)排出的影响,依托城开高速鸡鸣隧道,运用孔口流量理论,考虑风筒内流速、孔口与开挖工作面距离和孔口数量三个因素,基于数值模拟方法,研究风筒破损对CO排出的影响。研究表明:在风筒破损面积相同的前提下,漏风率随送风量的增加而增大;开挖工作面处的CO浓度在通风1min后达到峰值,约为3.5%;风筒破损会对隧道内的CO稀释产生滞后效应,滞后时间为1~3min并且送风量越小滞后效应越明显,最终导致距洞口25m范围内的CO浓度高于规范要求;通风长度区域内,三个因素中对CO排出的影响依次为:风筒内流速>孔口与开挖工作面距离>孔口数量;整体隧道内,影响依次为:风筒内流速>孔口与开挖工作面距离>孔口数量。并提出了通风设计和孔洞修补两方面的建议。  相似文献   

15.
为验证发生事故隧道纵向通风、非事故隧道正压送风的气流防烟模式的有效性,通过以类矩形地铁区间隧道为原型,建立了1:3的实体试验平台,对两种纵向通风模式的防烟效果、非事故隧道沿程温度及联络通道口温度变化对比分析。结果表明:事故隧道纵向通风、非事故隧道正压送风这种有效的气流防烟方法既可在无空间设置防火门的地铁区间隧道得以应用,也可以作为常规地铁区间隧道防火门损坏后降低火灾危害的应急手段。可见在有效的正压送风模式下,事故隧道纵向通风临界风速为1.6m/s,1#A联络通道口临界风速为1.7m/s,1#B联络通道口临界风速为1.8m/s,该参数可以为地铁区间隧道风机提供选型依据。  相似文献   

16.
基于剪切层扇形分层模型的射流声传播分析   总被引:1,自引:0,他引:1  
通过计算流体力学建立一种扇形分层剪切层速度模型,并以此为基础用几何声学方法推导整个射流结构的声传播模型.以实际开口式风洞为研究对象,用数值仿真给出射流结构速度分布.建立速度随角度均匀变化的扇形分层剪切层速度模型.用声折射理论推导不同速度层之间的声传播.以声漂移量为指标对射流声传播模型进行声学风洞试验验证,证明本模型对声漂移量的预测精度更高,在高风速、剪切层较厚的情况下,优势尤为明显.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号