首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
该研究主要进展包括:(1)建立了水煤浆水冷壁气化炉降阶模型,计算了气化炉内温度分布,水冷壁表面渣层厚度分布,以及水冷壁内温度分布,同时模型计算量小,可以满足在整体系统流程中的耦合优化计算;(2)开发了气化岛整体系统动态仿真机;(3)建立了工业多喷嘴对置式气化炉的分区模型,模型计算快速,模拟结果经与工业气化炉运行结果比较,模拟结果准确可靠;(4)通过对煤、煤灰、气化生成灰渣以及废水中氯元素含量的实验分析以及热力学分析,获得了气流床煤气化过程中氯元素的迁移特性;(5)采用Aspen Plus建立了两种以石油焦为原料的气化制氢模拟流程,通过对两个方案进行了模拟分析和评价,获得了两个方案的能量转换热效率和火用效率。  相似文献   

2.
基于Aspen Plus的甘油与生物质固定床共气化制氢工艺模拟   总被引:1,自引:0,他引:1  
利用Aspen Plus软件平台,对甘油与生物质固定床共气化制氢过程进行模拟研究.考察不同反应温度、甘油与生物质的质量比(m(G)/m(B))、气化剂物质的量的比(n(H2O)/n(C))和反应压力等条件对纯甘油与生物质、粗甘油与生物质混合共气化制氢的影响.模拟结果表明:生物质与不同甘油共气化时,温度、压力、n(H2O)/n(C)和m(G)/m(B)对两种混合物制氢的影响规律基本相同,因此可用纯甘油替代粗甘油来研究气化制氢特性;同时得出其最佳气化制氢条件是反应温度800~850,℃,m(G)/m(B)为1.0~1.2,n(H2O)/n(C)为0.8~1.0,压力≤0.1,MPa,在此条件下,氢气产率为55%左右.  相似文献   

3.
原生生物质在超临界水流化床系统中气化制氢   总被引:1,自引:0,他引:1  
以原生生物质玉米芯与羧甲基纤维素钠的混合为原料,利用实验室成功构建的超临界水流化床气化制氢系统,在压力25 MPa、温度550~650℃范围内,对其气化制氢特性进行研究,讨论了气化过程中气化时间、温度、流量、物料浓度对气化效果的影响.研究结果表明:温度对气化影响较大,升高温度有利于气化;小的流量对应长的反应器停留时间有利于产氢;随着物料质量分数的增加,生物质气化效果明显下降,而在超临界水流化床气化制氢系统中质量分数为18%的物料仍能长时间连续稳定气化,未发生反应器结渣堵塞现象.  相似文献   

4.
采用XRF、XRD和SEM/EDS等分析手段对神华煤气化灰渣的理化性质进行了表征,并考察了气化灰渣对金山石油焦/CO2气化反应活性的影响。结果表明:炉底灰渣和炉顶飞灰的灰分质量分数分别为78.39%和62.71%;炉底灰渣中Ca和Fe的质量分数较炉顶飞灰高,而炉顶飞灰中Si和Al的质量分数则比炉底灰渣高;气化灰渣中的矿物质主要以对气化反应无催化活性的惰性物质形态存在,炉底灰渣中对含碳物料气化反应有催化作用的主要是少量的硫酸钙、氧化铁和钾芒硝(K3Na(SO4)2),而炉顶飞灰中则是少量的硫酸钙;随着气化灰渣添加量的增加,石油焦催化气化反应速率达到最大值时所对应的转化率逐渐减小。当气化灰渣的添加量为5%~30%时,石油焦的气化活性提高了2~7倍,其中炉底灰渣的催化活性稍优于炉顶飞灰。  相似文献   

5.
为了分析高温质子交换膜燃料电池(HT-PEMFC)系统在不同工况下的效率,模拟了一个以天然气蒸汽重整氢气为燃料的HT-PEMFC发电系统.该系统由燃料电池堆(电堆)、甲烷蒸汽重整器(SMR)、水气反应器(WGS)、空压机、换热器、空冷器及水泵等单元组成.研究了电堆温度、系统压力、阴极化学计量数和蒸汽重整温度等参数对系统的影响,分析了整个燃料电池系统中各组成单元的能量损失、损失和功率分布情况.结果表明:随着电堆和SMR温度的升高,系统效率显著提高,而在SMR温度超过700,℃后系统效率开始下降;系统压力、阴极化学计量数和WGS温度对系统效率影响较小;在单电池电压为0.7,V时,整个系统的效率可以达到46.5%.  相似文献   

6.
固体氧化物电解水制氢系统效率   总被引:6,自引:0,他引:6  
电解水与高效清洁一次能源耦合制氢,是理想的大规模制氢技术。该文建立了电解水制氢系统效率评估模型,并通过该模型对碱性、固体聚合物电解池(SPE)及固体氧化物电解池(SOEC)制氢系统总制氢效率进行了计算与分析。碱性制氢系统电解效率与总制氢效率均较低,分别为56%和25%;SPE制氢系统电解效率虽有提高约76%,但其总制氢效率仍较低约35%;而SOEC制氢系统电解效率可达90%以上,总制氢效率高达55%,分别是SPE与碱性制氢系统的1.5和2倍。高温气冷堆耦合的SOEC电解制氢系统是目前已知总制氢效率最高的大规模制氢系统。  相似文献   

7.
高温气冷堆(high temperature gas-cooled reactor, HTGR)因其具有固有安全性和反应堆出口温度高的特点,在环境和能源领域拥有广阔的应用前景。HTGR不仅可以用于发电,还可以实现大规模制氢,而氢气可作为钢铁冶炼过程中的直接还原剂,有助于钢铁工业减少碳排放。该文提出了基于HTGR制氢的炼钢系统方案,包括反应堆、反应堆中间回路、制氢、发电和炼钢共5个子模块,并开展了多联产能源系统研究。其中,HTGR为制氢模块和发电模块提供热量,制氢模块产生的氢气作为还原剂和燃料进入竖炉(shaft furnace, SF)直接还原炼铁,制氢模块产生的氧气和发电模块产生的电供给电弧炉(electric arc furnace, EAF)炼钢。该文分析了碘硫循环效率、发电模块和制氢模块的功率比、直接还原铁(direct reduced iron, DRI)比例对系统产能的影响,以及系统的碳排放情况。结果表明:在发电模块与制氢模块功率比为1∶1, EAF直接还原铁占比为90%,碘硫循环制氢效率为37.8%的情况下,系统产钢率为45.6 t/h,每t钢可向电网输出1 381.5 ...  相似文献   

8.
电解水与高效清洁一次能源耦合制氢,是理想的大规模制氢技术。该文建立了电解水制氢系统效率评估模型,并通过该模型对碱性、固体聚合物电解池(SPE)及固体氧化物电解池(SOEC)制氢系统总制氢效率进行了计算与分析。碱性制氢系统电解效率与总制氢效率均较低,分别为56%和25%;SPE制氢系统电解效率虽有提高约76%,但其总制氢效率仍较低约35%;而SOEC制氢系统电解效率可达90%以上,总制氢效率高达55%,分别是SPE与碱性制氢系统的1.5和2倍。高温气冷堆耦合的SOEC电解制氢系统是目前已知总制氢效率最高的大规模制氢系统。  相似文献   

9.
蒸汽煤比对湍动循环流化床煤气化的影响   总被引:1,自引:1,他引:0  
以空气和水蒸气为气化剂,在压力为0.3 MPa的湍动循环流化床热态实验台上对淮北烟煤进行了煤气化试验,研究了蒸汽煤比(质量比)对气化过程的影响.气化炉提升段具有下宽上窄的特点,床料采用宽筛分石英砂.气化试验过程中,实现了提升段下部湍动流化、上部环核流动.试验结果表明:随着蒸汽煤比的增加,煤气中CH4体积分数基本保持不变,CO体积分数从13.12%下降到11.98%,H2体积分数从初始12.3%增加到14.63%而后下降至14.19%,CO2体积分数从13.84%下降至12.94%后,略微上升至13.06%.蒸汽煤比的变化对干煤气产率、冷煤气效率及碳转化率都有影响,其最大值分别为2.89 m3/kg, 59%, 81%.  相似文献   

10.
提出一种新型的生物质水蒸气气化制氢方法.该方法在生物质水蒸气气化过程中添加CO2吸收剂,旨在通过吸收CO2促进产氢反应向着氢气产生方向进行,从而提高产氢量.分析了Ca(OH)2、水蒸气、温度和保持时间对产氢量以及产气组分百分比的影响,结果表明:在生物质水蒸气气化过程中添加CO2吸收剂能显著提高产氢量;随着Ca(OH)2的增加产氢量先升高后略微降低,Ca(OH)2对水煤气反应的影响要明显强于对甲烷水蒸气重整反应的影响;产氢量随水蒸气的增加先升高后降低;产氢量随温度的升高迅速增加;充足的保持时间可以使制氢反应进行彻底.  相似文献   

11.
高含量煤在超临界水中气化制氢的实验研究   总被引:4,自引:0,他引:4  
针对当前煤在超临界水气化制氢研究中存在的物料质量分数低于5%、实验装置以高压釜居多且不能连续稳定产氢等问题,以高含量煤的气化制氢为研究目的,在反应器壁温650~800℃、反应压力23~27 MPa、物料流量3~7 kg/h的条件下,利用连续管流式反应系统对高含量煤进行了超临界水气化制氢实验研究,考察了温度、压力、物料流量、催化剂及氧化剂和物料含量对气化效果的影响规律,成功地将质量分数为16%的煤输送进反应器并稳定产气,煤的气化率和氢气产率分别为0.317和0.022.  相似文献   

12.
采用单一流化床二步气化方法,以煤作为热载体与发热体,水蒸气作为气化剂,在流化床试验装置上进行生物质(稻壳和木屑)气化的试验研究,考察反应温度(t)、水蒸气与生物质的质量比对燃气组分、氢产率和潜在氢产率的影响。实验结果表明,随着反应温度的升高,H2浓度、氢产率和潜在氢产率都不断增加,而H2与CO体积比逐渐减小;随着水蒸气与生物质的质量比的增大,H2浓度、H2与CO体积比、氢产率和潜在氢产率均不断增加,而CO与CO2体积比呈减小趋势。生产氢的最佳条件:t=1 025℃、水蒸气与生物质质量比为2。在最佳条件下,进一步研究了生物质种类对氢产率的影响。木屑气化制氢优于稻壳气化制氢,木屑气化所获得的氢产率(61.7g H2/kg)约为稻壳气化所获得氢产率(53.4 g H2/kg)的1.2倍。  相似文献   

13.
核能制氢的效率分析   总被引:1,自引:0,他引:1  
氢气的高效、清洁、大规模制备方法是发展氢能经济的基础,现有制氢技术难以满足这些需要。核能制氢作为一种有前景的大规模制氢方法,受到广泛研究。利用核能作为一次能源,对利用高温电解和碘硫循环两种工艺进行大规模制氢的热氢转换效率进行了估算及总结,并与目前工业应用的甲烷重整制氢与水电解制氢方法的效率进行了比较。研究结果表明,碘硫循环和高温电解的预期效率均可达到50%以上,显著高于从热到电再到氢的转换效率。  相似文献   

14.
目前,评价有机废水发酵法生物制氢系统产氢效能的指标,一般采用挥发性景浮固体fMLVSS)与总悬浮固体(MLSS)的比值(MLVSS/MLSS)、MLVSS的比产气(氢)速率及COD去除率等参数,但均存在不同程度的缺陷.为寻求评价发酵制氢活性污泥系统产氢效能的合理指标,以脱氢酶检测的碘硝基四唑紫(INT)法为基础,以发酵产氢系统的絮状活性污泥为样品,确立并优化了INT-比脱氢酶活性的检测与计算方法,并对比脱氢酶活性与发酵制氢系统的产氢效能进行了相关性分析.结果表明,INT-比脱氢酶活性检测的适宜条件是:在容积为10 mL的离心管中.先后加入一定浓度的污泥样品0.3 mL、19.8 mmol/L INT溶液1 mL、pH5乙酸钠缓冲剂1.5 mL.45℃暗处振荡反应30 min;反应终止剂选用98%的浓硫酸,萃取溶剂为无水乙醇,438 nm测定吸光度;检测污泥样品(MLVSS,挥发性悬浮固体)浓度可以在3.5~12.5 g,L范围内选定.絮状发酵产氢活性污泥的INT-比脱氢酶活性与比产氢速率非常高度相关,可以客观准确地反映厌氧生物制氢系统污泥的产氢活性.  相似文献   

15.
在我国致力于实现碳达峰、碳中和的要求下,氢能因具有零碳排高热值的特点,氢能产业发展成为我国未来发展的重要目标。针对电解水制氢储能的工业园区综合能源系统能量转换效率不高、制氢量少、经济效益低的特点以及国家对氢能发展大规模低成本制氢的需要,提出了一种以天然气制氢模式代替电解槽制氢的氢储能园区综合能源系统架构。在分析天然气水蒸气重整制氢单元的能耗与能量回收利用以及氢储能单元电、热、气多种能量特性的基础上,建立了天然气制氢储能的氢储能模型;进一步考虑设备投资成本、运行成本、碳排放价格以及制氢效益,以年化投资成本最小与年运行收益最大为目标建立目标函数,利用快速非支配排序遗传算法(NSGA-Ⅱ)进行求解,提出了以天然气制氢储能的园区综合能源系统氢储能优化配置模型。最后以新疆某园区为实际算例分析了园区配置氢储能后电源、电负荷、热负荷特性,运行经济效益以及天然气价格与碳排放价格对配置的影响,验证了通过配置天然气制氢的氢储能提升园区综合能源系统制氢量与运行收益的可行性,并指出了适用场景。  相似文献   

16.
超临界水中花生壳气化制氢催化剂的筛选与研究   总被引:2,自引:0,他引:2  
在釜式反应装置上,以原生生物质花生壳为原料、CMC为添加剂,对不同种类的催化剂在超临界水中生物质催化气化制氢的影响进行了实验研究.温度水平选择为400℃,压力控制在22~24 Mea范围内,物料的质量分数为10%,催化剂包括ZnCl2、K2CO3、KOH、Na2CO3、NaOH、LiOH、Ca(OH)2、Raney-Ni、橄榄石和白云石.实验结果表明:各种催化剂的催化效果有很大的区别,骨架催化剂Raney-Ni的大比表面积和特殊的电子层结构,使得生物质在超临界水中较低温度条件下可以达到良好的气化效果,在所考察的几种类型催化剂中,Raney-Ni的产氢效率最高,达到28.03 g/kg,是一种极具潜力的超临界水生物质制氢催化剂.  相似文献   

17.
基于Aspen Plus平台,对气体热载体工艺中不能利用的小颗粒油页岩与半焦混合气化发电过程进行模拟;并对模拟结果进行能量平衡和平衡计算,考察了空气当量比、汽固比和气化剂对气化性能和系统效率的影响。结果表明,使用空气作为气化剂时,设置空气当量比为0.302,汽固比为0.006 7,可以达到最佳的气化效果,所生成的合成气低位热值为6.12 MJ/Nm~3,冷气化效率为66.13%,此时系统的一次能源利用效率达到39.02%,效率也达到42.64%;另外,当使用氧气作为气化剂时,虽然冷气化效率有所提高,但系统总率会有一定程度降低。  相似文献   

18.
生物质与煤超临界水气化制氢的实验研究   总被引:1,自引:0,他引:1  
利用间隙式釜式反应器,在反应器内流体温度为450℃、初压为4MPa(终压为22~27MPa)、保温时间为20min、NaOH作为催化剂的条件下,分别对生物质模型化合物羧甲基纤维素钠(CMC)与煤以及原生生物质玉米芯与煤的超临界水气化制氢进行实验研究.结果表明:CMC/煤共超临界水气化制氢过程中,共气化的产氢率和气化率均高于同样情况下CMC、煤单独气化的加权平均值,玉米芯/煤共气化也出现类似结果,这说明CMC/煤、玉米芯/煤共超临界水气化制氢均存在协同效应.初步分析了协同效应产生的机理.  相似文献   

19.
生物质/煤超临界水气化制氢的主要影响因素   总被引:1,自引:0,他引:1  
以羧甲基纤维素钠(CMC)/华亭烟煤的超临界水共气化制氢为例,考察了温度(350~700℃)、压力(20~35 MPa)和物料(CMC 煤)的质量分数w(1.1%~2.0 %)等对生物质/煤共气化气体产物的影响.模拟和实验结果表明:得到的主要气体产物是H2、CO2和CH4,产气中H2的摩尔分数随温度的升高而升高,但温度升高到一定值后,H2的摩尔分数(x(H2)=67%)保持不变;随物料质量分数的增加,H2的摩尔分数减小,物料的温度和质量分数的变化对产气的作用远大于压力;制氢的适宜温度为450~550 ℃、压力为25 MPa左右、w≥15%.提出后续实验应着重提高物料在反应器内的加热速率,筛选研究在较低温度下能有效催化产氢的Ni催化剂.  相似文献   

20.
为提高传统压缩空气储能系统(CAES)的发电功率和能量利用率,设计了一种热电联供型湿空气透平循环的压缩空气储能系统(CAES-HAT),其将水作为压缩过程储热介质、通过合理利用压缩热和排气热量、以湿空气和水为工质分别对外输出电量和热量,同时分析了关键参数对系统燃烧室燃料质量流量、透平功率、供电量、供热量和系统效率的影响,揭示了释能机组进口工质温度随参数变化的规律。研究结果表明,与传统CAES相比,CAES-HAT具有更高的发电功率和效率,在给定系统条件下机组发电功率增加19.17%,达到354.75MW,供热功率达到66.36MW,相同发电量下节省燃料18.17%,系统效率达到58.14%。释能机组的参数对发电功率影响明显,供电量和供热量对水气比变化敏感,该结果可为CAES系统优化提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号