首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 974 毫秒
1.
利用X 射线近边吸收谱学(X-ray Absorption Near Edge Structure, XANES)方法研究了不同浓度的FeCl3 水溶液中Fe3+离子的电子结构和近邻结构. 在不同浓度的FeCl3 水溶液的XANES 谱中, XANES 谱的形状随着FeCl3 浓度的不同而发生改变. 在XANES 谱的边前结构中观测到边前锋的分裂, 其分裂的能量差约为1.6 eV, 随着浓度的降低约有0.2 eV 的高能方向的位移, 此边前结构由1s-3d 轨道的电子跃迁引起, 双峰分裂来源于配位体配位引起的3d 轨道分裂. 随着FeCl3 浓度的改变, XANES 谱的主峰也发生变化, 此变化来源于溶液中Fe—Cl 配位与Fe—O 配位的比例变化. 另外, 利用量子化学计算的方法对于Fe3+与不同数目的H2O 和Cl?配位体络合时的构型进行了计算, 得到了Fe3+在水溶液中近邻结构的信息, 从另一方面解释了FeCl3 溶液中Fe3+离子3d 轨道分裂能的变化  相似文献   

2.
微晶纤维素/1-丁基-3-甲基咪唑氯体系流变性能研究   总被引:1,自引:0,他引:1  
离子液体1-丁基-3-甲基咪唑氯(BmimCl)可用作溶解微晶纤维素(MCC)的优良溶剂。通过稳态剪切和动态扫描测试考察了微晶纤维素离子液体溶液的流变性能。结果表明,所有浓度的MCC/BmimCl溶液在高剪切速率和低剪切速率表现出剪切变稀行为。温度和浓度对MCC/BmimCl溶液的黏弹性质产生重要影响。将复合黏度数据用于Cross模型,并利用Arrhenius公式计算了不同浓度MCC/BmimCl溶液的流动活化能。  相似文献   

3.
A series of Fe(Ⅲ)-containing imidazolium-based ionic liquids containing ether substituents,including[C3OMim][FeCl4](1,[C3OMim]=1-(2-methoxyethyl)-3-methylimidazolium),[C3OiPim][FeCl4](2,[C3OiPim]=1-isopropyl-3-(2-methoxyethyl)imidazolium),[C3OBim][FeCl4](3,[C3OBim]=1-butyl-3-(2-methoxyethyl)imidazolium),[(C3O)2im][FeCl4](4,[(C3O)2im]=1,3-bis(2-methoxyethyl)imidazolium),[C3OMim][FeBr4](5)and[(C3O)2im][FeBr4](6),were prepared and characterized by elemental analysis,Raman spectroscopy and electrospray ionization mass spectrometry.The catalytic performances of 1–6 and related Fe(III)-based catalysts in the cross-coupling of aryl Grignard reagents with alkyl halides bearing-hydrogens were studied,revealing that mono(ether)functionality improves the catalytic activity and that bis(ether)functionality improves the reusability.After simply decanting the product contained in the ethereal layer,complex 4,which containing bis(ether)-functionalized imidazolium cation,could be successfully recycled seven times.  相似文献   

4.
The effects of ammonium (NH4+-N ) and nitrate ( NO3--N ) were examined on Fe fractions and FeCN (ferricyanide) reductase activity in intact root tips (0—3 cm) of young maize (Zea mays L. cv. Lenz) in solution culture by using short-term experiment under controlled Fe deficiency conditions (containing high HCO3- concentration in preculture solution). The results showed that Fe(Ⅱ) concentrations in root tip apoplast of maize were only 20—40 nmol/g FW which accounted for 7%—13% of total Fe. Most of Fe in root tips existed as Fe(Ⅲ) compounds. Imposition of the roots to NH4+-N or NO3--N for 60 min led to an increase of Fe(Ⅱ) in root tip apoplast. NH4+-N led to an increased concentration of Fe(Ⅱ) and exchangeable Fe (Fe(Ⅱ) and Fe (Ⅲ)) in root tips, while NO3--N increased FeCN reductase activity. The relationship between pH and Fe fractions, FeCN reductase activity was also discussed.  相似文献   

5.
Bis(2-propyloxy)calix[4]crown-6 (BPC6) is an effective separation agent for cesium removing from spent nuclear fuel. The study on radiolytic behavior of BPC6 itself under γ-irradiation was required for evaluating its feasibility of practical application. It was found that BPC6 exhibited excellent radiation stability at dose less than 100 kGy. However, the isopropyl groups in BPC6 under- went oxidation and dealkylation to form carbonyl groups and phenolic hydroxyl groups at dose above 300 kGy, respectively. When the dose was more than 1000 kGy, the ring opening of crown ether structure of BPC6 resulted in the formation of phenolic hydroxyl groups as well. The formation of radiolytic products containing phenolic hydroxyl groups during the irradiation of BPC was confirmed by using FeCl 3 as a probe. Combining with the radiolytic behavior of two model chemicals (1-isopropoxybenzene and benzo-18-crown-6 ether), the radiolytic behavior and mechanism of BPC6 under -irradiation was testified further.  相似文献   

6.
Fe/HNT (Iron/Halloysite-nanotube) heterogeneous semiconductor catalysts operating effectively under visible light were developed by using FeCl3, FeSO4 and Fe(OH)3 sludge precipitated after electro-Fenton process and named as Fe/HNT-I, Fe/HNT-II and Fe/HNT-III, respectively. Chemical configuration and particle morphology of the catalysts were characterized with XRD, SEM-EDS and UV–vis DRS. Effect of the developed Fe/HNT photocatalysts was investigated for the degradation of Reactive Orange 16 (RO16) textile dye under visible light. The photocatalytic decolorization of RO16 was 95.6%, 99.3% and 96.6%, respectively. It was found that the photocatalytic performance of Fe/HNT-III catalyst under visible light was effective compared to Fe/HNT-I and Fe/HNT-II. The iron ratio in the catalyst's structure (Fe:HNT ratio 0.25, 0.5 and 0.75 (w/w)) and pH value (4, 7 and 9) in production phase were also changed to investigate the photocatalytic effect of Fe/HNT-III. An Fe:HNT ratio of 0.25 and a pH of 4 were determined as the optimum conditions for catalyst production. Optimum H2O2 dosage value was also investigated for photocatalytic oxidation process and determined to be 10 ?mM. Finally, the optimum conditions were further used for the degradation of Terbinafine hydrochloride (TerHCl) active drug and the treatment of wastewater from the textile and pharmaceutical industries.  相似文献   

7.
The reaction of anhydrous FeBr2 with two equivalents of anionic N-heterocyclic carbene (NaL1 and NaL2), which are generated in situ by the reaction of the corresponding salt [4-R-C6H4COCH2{CH- (NCHCHNiPr)}Br] (R = OCH3, H2L1Br, 1; R = F, H2L2Br, 2) with two equivalents of NaN(SiMe3)2, affords bis-ligand Fe(II) complexes of L12Fe (3) and L22Fe (4) in high yield, respectively. Attempt to synthesize mono-ligand Fe(II) bromide by the 1:1 molar ratio of NaL to FeBr2 is unsuccessful, and the same com- plexes of 3 and 4 were obtained. Both 3 and 4 have been depicted by elemental analysis and X-ray structure determination. Preliminary studies show that both 3 and 4 can be used as single-component catalyst for the ring-opening polymerization of ε-caprolactone, and the catalytic activity of 3 is higher than that of 4.  相似文献   

8.
A highly efficient procedure has been developed for the conjugate addition of amines to electron deficient alkenes. The novel ionic liquid [HO3S-bPy][FeCl4] with both Lewis and Brønsted acid sites has been synthesized successfully for the reactions. The results show that the catalyst was very efficient for the conjugate addition of amines to electron deficient alkenes with excellent yields in several minutes. This method has several key features including operational simplicity, no need of any solvent, low cost of the catalyst used, high yields, reusability, excellent chemoselectivity, and wide applicability.  相似文献   

9.
在微波辐射下,由曱基咪唑和溴乙胺氢溴酸盐合成了中间体溴化1-曱基-3-氨乙基咪 唑,中间体再在微波辐射下经过阴离子交换,得到功能化离子液体1-曱基-3-氨乙基咪唑四氟 硼酸盐。通过1H-NMR和IR对产物结构进行表征确认,并讨论了微波辐射功率和辐射时间对 这两步反应的影响。该方法与常规方法相比,具有反应时间短,收率高的优点。  相似文献   

10.
SnCo alloy nanowires were successfully electrodeposited from SnCl2-CoCl2-1-ethyl-3-methylimidazolium chloride (EMIC) ionic liquid without a template. The nanowires were obtained from the molar ratio of 5:40:60 for SnCl2:CoCl2:EMIC at -0.55 V and showed a minimum diameter of about 50 nm and lengths of over 20 μm. The as-fabricated SnCo nanowires were about 70 nm in diameter and featured a Sn/Co weight ratio of 3.85:1, when used as an anode for a Li-ion battery, they presented respective specific capacities of 687 and 678 mAh·g-1 after the first charge and discharge cycle and maintained capacities of about 654 mAh·g-1 after 60 cycles and 539 mAh·g-1 after 80 cycles at a current density of 300 mA·g-1. Both the nanowire structure and presence of elemental Co helped buffer large volume changes in the Sn anode during charging and discharging to a certain extent, thereby improving the cycling performance of the Sn anode.  相似文献   

11.
Fe5O7(OH)·4H2O ferrihydrite is a low-crystallinity antiferromagnetic material. γ-Fe2O3 (maghemite) magnetic nanoparticles were prepared from a ferrihydrite precursor, by chemically induced transformation in FeCl2/NaOH solution. The magnetization, morphology, crystal structure and chemical composition of the products were determined by vibrating sample magnetometry, transmission electron microscopy, X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy (XPS). Ferrihydrite underwent aggregation growth and transformed into α-FeO(OH) (goethite) particles, which subsequently transformed into γ-Fe2O3 nanoparticles, that became coated with NaCl. The γ-Fe2O3 particles had a flake-like morphology, when prepared from 0.01 mol/L FeCl2 and a FeCl2:NaOH molar ratio of 0.4. The γ-Fe2O3 particles were more spherical, when prepared from a FeCl2:NaOH molar ratio of 0.6. The Fe content of the flake-like particles was lower than that of the spherical particles. Their magnetizations were similar, and the coercivity of the flake-like particles was larger. The differences in morphology and magnetization were attributed to the surface effect, and the difference in coercivity to the shape effect.  相似文献   

12.
Color centers of CaF2 crystals subjected to three high-dose gamma-ray irradiation treatments were studied. Three absorption bands at 349, 409 and 478 nm are ascribed to the F interstitials through the variation in difference additional absorption values. The transformation of interstitial F atoms to F ions (Fi-) is demonstrated using data with increasing radiation dose. The decrease in the 600 nm absorption band and the occurrence of the 580 nm band correspond to F2+ center conversion to F center. The complex (F~--Fi0 ) might be associated with the 962 and 1196 nm bands.  相似文献   

13.
The dye-sensitized nanocrystalline TiO2 thin filmsolar cells (DSSCs) have attracted much attention since1990s[1— , due to their high light to electrical energy 4]conversion efficiency. So far, many studies have beenmade on the use of liquid electrolytes such as acetonitrile,3-methoxypropionitrile and a mixture of ethylene/pro-pylene carbonate (EC/PC) containing I? /I3 redox cou-?ple. A light to electrical energy conversion efficiency of7%— 12% has been obtained for DSSC using liquid e…  相似文献   

14.
The reduction of titanomagnetite (TTM) ironsand, which contains 11.41wt% TiO2 and 55.63wt% total Fe, by graphite was performed using a thermogravimetric analysis system under an argon gas atmosphere at 1423–1623 K. The behavior and effects of titanium in TTM ironsand during the reduction process were investigated by means of thermogravimetric analysis, X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. During the reduction procedure, the titanium concentrated in the slag phase, where the phase transformation followed this sequence: FeO + FeTiO3 → Fe2TiO4 → FeTiO3 → FeTi2O5 → TiO2. The calculated results for the reduction kinetics showed that the carbothermic reduction was controlled by the diffusion of ions through the product layer. Furthermore, the apparent activation energy was 170.35 kJ·mol-1.  相似文献   

15.
Spin-crossover complexes are of great interest to the scientists because of their potential application in molecular-based electronic devices. Some octahedral metal compounds with 3dn (4 ≤ n ≤ 7) configuration can induce a spin state conversion through a fine tuning condition (temperature, pressure, light irradiation, etc.). If the conversion occurs reversibly with a hystersis loop and color change, it will make the system possessing memory effect. The memory effect can be magnified and the …  相似文献   

16.
A novel hydrothermal process was developed to extract zinc from pure zinc ferrite (ZnFe2O4) nanopowder and zinc-containing electric arc furnace (EAF) dust using hexahydrated ferric chloride (FeCl3·6H2O) as a decomposing agent. The effects of solid FeCl3·6H2O to ZnFe2O4 ratio by mass (RF/Z), hydrothermal reaction temperature, and time on zinc extraction were systematically investigated. In the results, when the hydrothermal reaction is conducted at 150℃ for 2 h with RF/Z of 15:20, the efficiency of zinc extraction from ZnFe2O4 reaches 97.2%, and the concentration of ferric ions (Fe3+) in the leaching solution is nearly zero, indicating a high selectivity for zinc. In addition, the zinc extraction efficiency from the EAF dust reaches 94.5% in the case of the hydrothermal reaction performed at 200℃ for 10 h with the solid FeCl3·6H2O to EAF dust ratio by mass (RF/EAF dust) of 15:10. Zinc and iron separation is achieved by adjusting the pH value of the leaching solution according to the different precipitation pH values of metal hydroxides.  相似文献   

17.
The acetalization reactions of isobutyraldehyde with 2,2,4-trimethyl-1,3-pentanediol (TMPD) for the synthesis of 2,4-diisopropyl-5,5-dimethyl-1,3-dioxsne were carried out under mild reaction conditions using four water-stable Brenstad-acidic task-specific ionic liquids ([HMIM]BF4, -SO3H funcUonalized acidic ionic liquid, -COOH functionalized acidic ionic liquid, [NMP][HSO4]) as environmentally benign catalysts for the first time. The process is highly effective and very selective. The -COOH functionalized Brensted acidic ionic liquid with the two acid sites (IL-3) exhibited the most excellent catalytic performance under mild reactlon conditions. The -COOH functionalized Brensted acidic ionic liquid could be conveniently separated from the product and easily recycled in subsequent runs.  相似文献   

18.
Perrhenate(ReO4-) was used as nonradioactive surrogate for the radionuclide pertechnetate(99TcO-4) to investigate the potential of using starch-stabilized zero valent iron(ZVI) nanoparticles for reductive immobilization of pertechnetate in soil and groundwater.Batch kinetic tests indicated that the starch-stabilized ZVI nanoparticles were able to reductively remove ~96% of perrhenate(10 mg/L) from water within 8 h.XRD analyses confirmed that ReO 2 was the reduction product.A pseudo-first-order kinetic model was able to interpret the kinetic data,which gave a pseudo first order rate constant(kobs) value of 0.43h-1 at pH 6.9 and room temperature(25℃).Increasing solution pH up to 8 progressively increased the reaction rate.However,highly alkaline pH(10) resulted in much inhibited reaction rate.Consequently,the optimal pH range was identified to be from 7 to 8.Increasing solution temperature from 15 to 45℃ increased k obs from 0.38 to 0.53 h-1.The classical Arrhenius equation was able to interpret the temperature effect,which gave a low activation energy value of 7.61 kJ/mol.When the ReO-4-loaded loess was treated with the stabilized nanoparticles suspension([Fe]=560 mg/L),the water leachable ReO-4 was reduced by 57% and nearly all eluted Re was in the form of ReO2.This finding indicates that starch-stabilized ZVI nanoparticles are promising for facilitating in situ immobilization of ReO-4 in soil and groundwater.  相似文献   

19.
A series of WO3 hollow microspheres decorated with Ag3PO4 nanoparticles (APW) composites with Ag3PO4:WO3 mass percentage of 20% (20APW), 30%(30APW), 40%(40APW) and 50% (APW) were successfully synthesized, characterized and tested for the degradation of the Rhodamine B(RhB) under 300 ?W xenon lamp radiation. The photocatalytic results showed that the photocatalytic degradation performances of WO3 hollow microspheres decorated with Ag3PO4 nanoparticles on RhB were significantly enhanced, which were much higher than that of individual Ag3PO4 and WO3. Especially for 40APW, RhB can be completely degraded within 10 ?min. The order of degradation efficiency is 20APW<50APW< 30APW<40APW. The rate constant of 40APW (0.3902 min?1) is about 81.3 times that of WO3 (0.0048 min?1). The diffuse reflection, photoluminescence and electrochemical impedance tests showed that the formation of Ag3PO4/WO3 composite structure broadened the light absorption range, reduced the recombination rate of photogenerated electrons and holes, and decreased the resistance to charge transfer, which are beneficial to the improvement of photocatalytic performance. The capture agent experiments were carried out with 40APW, which specified the primary role of h+ and ?O2? in the degradation of RhB. The formation of heterojunction between Ag3PO4 and WO3 that effectively separates photogenerated electrons and holes are contributed to the enhancement of photocatalytic properties of APW composites.  相似文献   

20.
Mesoporous LiFePO4 microspheres were simply synthesized by a low temperature(130℃),template-free hydrothermal route using low cost LiOH,Fe(NO3)3 and NH4H2PO4 as starting raw materials.These microspheres are composed of densely aggregated LiFePO4 nanoparticles and filled with interconnected mesochannels,which demonstrates not only a high tap density(≥1.4 g cm-3),a high capacity of 150 mAh g-1(~90% of its theoretical capacity) at 0.5 C rate,but also a ≥ 80% utilization of its theoretical capacity at a high rate of 1 C.In addition,the hydrothermal synthesis developed in this work is simple and cost-effective,it may provide a new route for production of the LiFePO4 material in battery applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号