首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Neuroblastoma, a tumour derived from the peripheral sympathetic nervous system, is one of the most frequent solid tumours in childhood. It usually occurs sporadically but familial cases are observed, with a subset of cases occurring in association with congenital malformations of the neural crest being linked to germline mutations of the PHOX2B gene. Here we conducted genome-wide comparative genomic hybridization analysis on a large series of neuroblastomas. Copy number increase at the locus encoding the anaplastic lymphoma kinase (ALK) tyrosine kinase receptor was observed recurrently. One particularly informative case presented a high-level gene amplification that was strictly limited to ALK, indicating that this gene may contribute on its own to neuroblastoma development. Through subsequent direct sequencing of cell lines and primary tumour DNAs we identified somatic mutations of the ALK kinase domain that mainly clustered in two hotspots. Germline mutations were observed in two neuroblastoma families, indicating that ALK is a neuroblastoma predisposition gene. Mutated ALK proteins were overexpressed, hyperphosphorylated and showed constitutive kinase activity. The knockdown of ALK expression in ALK-mutated cells, but also in cell lines overexpressing a wild-type ALK, led to a marked decrease of cell proliferation. Altogether, these data identify ALK as a critical player in neuroblastoma development that may hence represent a very attractive therapeutic target in this disease that is still frequently fatal with current treatments.  相似文献   

2.
Activating mutations in ALK provide a therapeutic target in neuroblastoma   总被引:1,自引:0,他引:1  
Neuroblastoma, an embryonal tumour of the peripheral sympathetic nervous system, accounts for approximately 15% of all deaths due to childhood cancer. High-risk neuroblastomas are rapidly progressive; even with intensive myeloablative chemotherapy, relapse is common and almost uniformly fatal. Here we report the detection of previously unknown mutations in the ALK gene, which encodes a receptor tyrosine kinase, in 8% of primary neuroblastomas. Five non-synonymous sequence variations were identified in the kinase domain of ALK, of which three were somatic and two were germ line. The most frequent mutation, F1174L, was also identified in three different neuroblastoma cell lines. ALK complementary DNAs encoding the F1174L and R1275Q variants, but not the wild-type ALK cDNA, transformed interleukin-3-dependent murine haematopoietic Ba/F3 cells to cytokine-independent growth. Ba/F3 cells expressing these mutations were sensitive to the small-molecule inhibitor of ALK, TAE684 (ref. 4). Furthermore, two human neuroblastoma cell lines harbouring the F1174L mutation were also sensitive to the inhibitor. Cytotoxicity was associated with increased amounts of apoptosis as measured by TdT-mediated dUTP nick end labelling (TUNEL). Short hairpin RNA (shRNA)-mediated knockdown of ALK expression in neuroblastoma cell lines with the F1174L mutation also resulted in apoptosis and impaired cell proliferation. Thus, activating alleles of the ALK receptor tyrosine kinase are present in primary neuroblastoma tumours and in established neuroblastoma cell lines, and confer sensitivity to ALK inhibition with small molecules, providing a molecular rationale for targeted therapy of this disease.  相似文献   

3.
Neuroblastoma in advanced stages is one of the most intractable paediatric cancers, even with recent therapeutic advances. Neuroblastoma harbours a variety of genetic changes, including a high frequency of MYCN amplification, loss of heterozygosity at 1p36 and 11q, and gain of genetic material from 17q, all of which have been implicated in the pathogenesis of neuroblastoma. However, the scarcity of reliable molecular targets has hampered the development of effective therapeutic agents targeting neuroblastoma. Here we show that the anaplastic lymphoma kinase (ALK), originally identified as a fusion kinase in a subtype of non-Hodgkin's lymphoma (NPM-ALK) and more recently in adenocarcinoma of lung (EML4-ALK), is also a frequent target of genetic alteration in advanced neuroblastoma. According to our genome-wide scans of genetic lesions in 215 primary neuroblastoma samples using high-density single-nucleotide polymorphism genotyping microarrays, the ALK locus, centromeric to the MYCN locus, was identified as a recurrent target of copy number gain and gene amplification. Furthermore, DNA sequencing of ALK revealed eight novel missense mutations in 13 out of 215 (6.1%) fresh tumours and 8 out of 24 (33%) neuroblastoma-derived cell lines. All but one mutation in the primary samples (12 out of 13) were found in stages 3-4 of the disease and were harboured in the kinase domain. The mutated kinases were autophosphorylated and displayed increased kinase activity compared with the wild-type kinase. They were able to transform NIH3T3 fibroblasts as shown by their colony formation ability in soft agar and their capacity to form tumours in nude mice. Furthermore, we demonstrate that downregulation of ALK through RNA interference suppresses proliferation of neuroblastoma cells harbouring mutated ALK. We anticipate that our findings will provide new insights into the pathogenesis of advanced neuroblastoma and that ALK-specific kinase inhibitors might improve its clinical outcome.  相似文献   

4.
R L O'Brien  R L Brinster  U Storb 《Nature》1987,326(6111):405-409
Initial studies of somatically acquired mutations in immunoglobulin V regions from hybridomas and myelomas that are not derived from joining aberrations, suggested a controlled and specific hypermutation process, because spontaneous mutation rates observed for other genes are extremely low. Some evidence for the idea that mutations are introduced during V-gene rearrangement came from the clustering of mutations at the joining sites, from the absence of mutations in unrearranged V genes and from the low level of mutations in only partially (D-J) rearranged nonproductive heavy-chain alleles. Another model in which mutations accumulate with each cell division, rather than being introduced all at once, was supported by the finding that immunoglobulin genes of hybridomas derived from a single mouse frequently had several mutations in common, and so might be derived from the same precursor cell whose daughters then accumulated additional mutations. But the common mutations in some cases could be due to as yet unidentified related germline genes, or could represent the effect of antigen selection for certain amino acids. To try to detect hypermutation in the absence of V-gene rearrangement, we isolated B lymphocytes with endogenous heavy-chain gene mutations from transgenic mice carrying pre-rearranged kappa-transgenes. We found that these kappa-transgenes were also somatically mutated. This and other observations indicated that: ongoing rearrangement is not required for mutation; there are signals for hypermutation in the transgenes; the mutations are found only in the variable region, so the constant region may not be a target; different transgene insertion sites are compatible with hypermutations and more than one transgene is expressed in the same cell.  相似文献   

5.
Nazarian R  Shi H  Wang Q  Kong X  Koya RC  Lee H  Chen Z  Lee MK  Attar N  Sazegar H  Chodon T  Nelson SF  McArthur G  Sosman JA  Ribas A  Lo RS 《Nature》2010,468(7326):973-977
Activating B-RAF(V600E) (also known as BRAF) kinase mutations occur in ~7% of human malignancies and ~60% of melanomas. Early clinical experience with a novel class I RAF-selective inhibitor, PLX4032, demonstrated an unprecedented 80% anti-tumour response rate among patients with B-RAF(V600E)-positive melanomas, but acquired drug resistance frequently develops after initial responses. Hypotheses for mechanisms of acquired resistance to B-RAF inhibition include secondary mutations in B-RAF(V600E), MAPK reactivation, and activation of alternative survival pathways. Here we show that acquired resistance to PLX4032 develops by mutually exclusive PDGFRβ (also known as PDGFRB) upregulation or N-RAS (also known as NRAS) mutations but not through secondary mutations in B-RAF(V600E). We used PLX4032-resistant sub-lines artificially derived from B-RAF(V600E)-positive melanoma cell lines and validated key findings in PLX4032-resistant tumours and tumour-matched, short-term cultures from clinical trial patients. Induction of PDGFRβ RNA, protein and tyrosine phosphorylation emerged as a dominant feature of acquired PLX4032 resistance in a subset of melanoma sub-lines, patient-derived biopsies and short-term cultures. PDGFRβ-upregulated tumour cells have low activated RAS levels and, when treated with PLX4032, do not reactivate the MAPK pathway significantly. In another subset, high levels of activated N-RAS resulting from mutations lead to significant MAPK pathway reactivation upon PLX4032 treatment. Knockdown of PDGFRβ or N-RAS reduced growth of the respective PLX4032-resistant subsets. Overexpression of PDGFRβ or N-RAS(Q61K) conferred PLX4032 resistance to PLX4032-sensitive parental cell lines. Importantly, MAPK reactivation predicts MEK inhibitor sensitivity. Thus, melanomas escape B-RAF(V600E) targeting not through secondary B-RAF(V600E) mutations but via receptor tyrosine kinase (RTK)-mediated activation of alternative survival pathway(s) or activated RAS-mediated reactivation of the MAPK pathway, suggesting additional therapeutic strategies.  相似文献   

6.
The protein-kinase family is the most frequently mutated gene family found in human cancer and faulty kinase enzymes are being investigated as promising targets for the design of antitumour therapies. We have sequenced the gene encoding the transmembrane protein tyrosine kinase ERBB2 (also known as HER2 or Neu) from 120 primary lung tumours and identified 4% that have mutations within the kinase domain; in the adenocarcinoma subtype of lung cancer, 10% of cases had mutations. ERBB2 inhibitors, which have so far proved to be ineffective in treating lung cancer, should now be clinically re-evaluated in the specific subset of patients with lung cancer whose tumours carry ERBB2 mutations.  相似文献   

7.
8.
Parental origin of mutations of the retinoblastoma gene   总被引:20,自引:0,他引:20  
Retinoblastoma and osteosarcoma arise from cells that have lost both functional copies of the retinoblastoma gene. Using the cloned retinoblastoma gene and other linked polymorphic loci, it is possible to reconstruct the sequential loss of the two homologous gene copies that precedes the development of these tumours. In non-hereditary tumours, the loss of each of the two homologues occurs somatically; in hereditary cases, the initial mutation is in the germline. Recently, Toguchida et al. reported that the paternally derived copy is preferentially the first one to become mutant during the genesis of non-hereditary osteosarcomas. We report here a similar analysis of patients with retinoblastoma in which we find no such predilection for initial somatic mutations. In contrast, when an initial mutation was a new germline mutation, it was derived from the father, a result which is consistent with new germline mutations arising primarily during spermatogenesis.  相似文献   

9.
Oncogenic mutations in the serine/threonine kinase B-RAF (also known as BRAF) are found in 50-70% of malignant melanomas. Pre-clinical studies have demonstrated that the B-RAF(V600E) mutation predicts a dependency on the mitogen-activated protein kinase (MAPK) signalling cascade in melanoma-an observation that has been validated by the success of RAF and MEK inhibitors in clinical trials. However, clinical responses to targeted anticancer therapeutics are frequently confounded by de novo or acquired resistance. Identification of resistance mechanisms in a manner that elucidates alternative 'druggable' targets may inform effective long-term treatment strategies. Here we expressed ~600 kinase and kinase-related open reading frames (ORFs) in parallel to interrogate resistance to a selective RAF kinase inhibitor. We identified MAP3K8 (the gene encoding COT/Tpl2) as a MAPK pathway agonist that drives resistance to RAF inhibition in B-RAF(V600E) cell lines. COT activates ERK primarily through MEK-dependent mechanisms that do not require RAF signalling. Moreover, COT expression is associated with de novo resistance in B-RAF(V600E) cultured cell lines and acquired resistance in melanoma cells and tissue obtained from relapsing patients following treatment with MEK or RAF inhibitors. We further identify combinatorial MAPK pathway inhibition or targeting of COT kinase activity as possible therapeutic strategies for reducing MAPK pathway activation in this setting. Together, these results provide new insights into resistance mechanisms involving the MAPK pathway and articulate an integrative approach through which high-throughput functional screens may inform the development of novel therapeutic strategies.  相似文献   

10.
Tyrosine kinase receptor indistinguishable from the c-met protein   总被引:42,自引:0,他引:42  
Growth factor receptors with protein tyrosine kinase activity are central to the control of proliferation of both normal and malignant cells. Using anti-phosphotyrosine antibodies, we have previously identified a transmembrane glycoprotein with abnormally high protein tyrosine kinase activity in a human gastric tumour cell line (GTL-16). Electrophoresis under non-reducing conditions revealed that this kinase (relative molecular mass 145,000 (145 K)) is disulphide-linked to a 50K chain in an alpha beta-complex of 190K (p190). From its novel two-chain structure, we deduced that p190 was the prototype of a new class of tyrosine kinase receptors. We now show that p190 is indistinguishable from the protein encoded by the c-met proto-oncogene and that the alpha beta-subunit structure is conserved in other human cell lines. We also show that the high level of p190 found in the GTL-16 cell line is accompanied by amplification and overexpression of c-met. This provides the first example of a functional alteration of c-met in a human tumour cell line.  相似文献   

11.
酪氨酸激酶Btk是非受体酪氨酸家族的成员,它由PH结构域、TH结构域、SH3结构域、SH2结构域和催化结构域5部分组成.Btk参与多种信号通路,对细胞的增殖、分化和凋亡起着重要的调控作用.Btk的突变可导致X连锁无丙种球蛋白血症,一直以来都是研究热点.笔者将围绕Btk的结构、功能、X连锁无丙种球蛋白血症的临床表现等方面的内容加以综述,着重探讨Btk参与B细胞信号通路、TLR信号通路和肥大细胞脱颗粒等过程的具体机制.  相似文献   

12.
目的探讨全自动免疫组化筛查间变性淋巴瘤激酶(ALK)基因融合非小细胞肺癌的临床特点及病理特征.方法选取经病理检查确诊的554例非小细胞肺癌组织,采用Ventana抗ALK试剂和全自动免疫组化(IHC)染色检测ALK状态,分析ALK基因融合非小细胞肺癌的临床特点和病理特征.结果本次研究的554例非小细胞肺癌患者组织中,共筛选出34例ALK阳性,占6.14%;年龄60岁的非小细胞肺癌患者ALK阳性率8.69%,明显高于年龄≥60岁的3.62%,差异具有显著统计学意义(P0.01);男性患者ALK阳性率6.71%高于女性5.21%,但差异无统计学意义(P0.05).组织形态学方面,34例ALK阳性非小细胞肺癌中28例为肺腺癌,6例为非肺腺癌.16例实体型为主腺癌合并黏液产生,7例腺泡型为主腺癌,1例为乳头型为主腺癌,4例为浸润性黏液腺癌,4例为鳞状细胞癌.EGFR基因突变检测显示:仅有1例合并该基因突变,其余均为野生型.9例IHC阳性样本,9例ALK基因融合非小细胞肺癌,9例IHC阴性样本经荧光原位杂交技术检测和RT-PCR检测均为阴性结果,6例IHC染色可能为阳性,经荧光原位杂交技术检测均显示为ALK融合阴性.结论 ALK基因融合肺癌是非小细胞肺癌一新的分子亚型,具有独特的临床表现和病理形态;Ventana抗ALK试剂和IHC染色是检测ALK阳性非小细胞肺癌首选方法,对提高该类型肺癌的检出率及个体化治疗具有重要意义.  相似文献   

13.
14.
Neuroblastoma is a childhood tumour of the peripheral sympathetic nervous system. The pathogenesis has for a long time been quite enigmatic, as only very few gene defects were identified in this often lethal tumour. Frequently detected gene alterations are limited to MYCN amplification (20%) and ALK activations (7%). Here we present a whole-genome sequence analysis of 87 neuroblastoma of all stages. Few recurrent amino-acid-changing mutations were found. In contrast, analysis of structural defects identified a local shredding of chromosomes, known as chromothripsis, in 18% of high-stage neuroblastoma. These tumours are associated with a poor outcome. Structural alterations recurrently affected ODZ3, PTPRD and CSMD1, which are involved in neuronal growth cone stabilization. In addition, ATRX, TIAM1 and a series of regulators of the Rac/Rho pathway were mutated, further implicating defects in neuritogenesis in neuroblastoma. Most tumours with defects in these genes were aggressive high-stage neuroblastomas, but did not carry MYCN amplifications. The genomic landscape of neuroblastoma therefore reveals two novel molecular defects, chromothripsis and neuritogenesis gene alterations, which frequently occur in high-risk tumours.  相似文献   

15.
LKB1 modulates lung cancer differentiation and metastasis   总被引:1,自引:0,他引:1  
Germline mutation in serine/threonine kinase 11 (STK11, also called LKB1) results in Peutz-Jeghers syndrome, characterized by intestinal hamartomas and increased incidence of epithelial cancers. Although uncommon in most sporadic cancers, inactivating somatic mutations of LKB1 have been reported in primary human lung adenocarcinomas and derivative cell lines. Here we used a somatically activatable mutant Kras-driven model of mouse lung cancer to compare the role of Lkb1 to other tumour suppressors in lung cancer. Although Kras mutation cooperated with loss of p53 or Ink4a/Arf (also known as Cdkn2a) in this system, the strongest cooperation was seen with homozygous inactivation of Lkb1. Lkb1-deficient tumours demonstrated shorter latency, an expanded histological spectrum (adeno-, squamous and large-cell carcinoma) and more frequent metastasis compared to tumours lacking p53 or Ink4a/Arf. Pulmonary tumorigenesis was also accelerated by hemizygous inactivation of Lkb1. Consistent with these findings, inactivation of LKB1 was found in 34% and 19% of 144 analysed human lung adenocarcinomas and squamous cell carcinomas, respectively. Expression profiling in human lung cancer cell lines and mouse lung tumours identified a variety of metastasis-promoting genes, such as NEDD9, VEGFC and CD24, as targets of LKB1 repression in lung cancer. These studies establish LKB1 as a critical barrier to pulmonary tumorigenesis, controlling initiation, differentiation and metastasis.  相似文献   

16.
Y Ben-Neriah  A R Bauskin 《Nature》1988,333(6174):672-676
Tyrosine-specific phosphorylation of proteins is a key to the control of diverse pathways leading to cell growth and differentiation. The protein-tyrosine kinases described to date are either transmembrane proteins having an extracellular ligand binding domain or cytoplasmic proteins related to the v-src oncogene. Most of these proteins are expressed in a wide variety of cells and tissues; few are tissue-specific. Previous studies have suggested that lymphokines could mediate haematopoietic cell survival through their action on glucose transport, regulated in some cells through the protein-tyrosine kinase activity of the insulin receptor. We have investigated the possibility that insulin receptor-like genes are expressed specifically in haematopoietic cells. Using the insulin receptor-related avian sarcoma oncogene v-ros as a probe, we have isolated and characterized the complementary DNA of a novel gene, ltk (leukocyte tyrosine kinase). The ltk gene is expressed mainly in leukocytes, is related to several tyrosine kinase receptor genes of the insulin receptor family and has unique structural properties: it apparently encodes a transmembrane protein devoid of an extracellular domain. Two candidate ltk proteins have been identified with antibodies in the mouse thymus, and have properties indicating that they are integral membrane proteins. These features suggest that ltk could be a signal transduction subunit for one or several of the haematopoietic receptors.  相似文献   

17.
Myeloproliferative disorders are clonal haematopoietic stem cell malignancies characterized by independency or hypersensitivity of haematopoietic progenitors to numerous cytokines. The molecular basis of most myeloproliferative disorders is unknown. On the basis of the model of chronic myeloid leukaemia, it is expected that a constitutive tyrosine kinase activity could be at the origin of these diseases. Polycythaemia vera is an acquired myeloproliferative disorder, characterized by the presence of polycythaemia diversely associated with thrombocytosis, leukocytosis and splenomegaly. Polycythaemia vera progenitors are hypersensitive to erythropoietin and other cytokines. Here, we describe a clonal and recurrent mutation in the JH2 pseudo-kinase domain of the Janus kinase 2 (JAK2) gene in most (> 80%) polycythaemia vera patients. The mutation, a valine-to-phenylalanine substitution at amino acid position 617, leads to constitutive tyrosine phosphorylation activity that promotes cytokine hypersensitivity and induces erythrocytosis in a mouse model. As this mutation is also found in other myeloproliferative disorders, this unique mutation will permit a new molecular classification of these disorders and novel therapeutical approaches.  相似文献   

18.
Meng W  Sawasdikosol S  Burakoff SJ  Eck MJ 《Nature》1999,398(6722):84-90
Cbl is an adaptor protein that functions as a negative regulator of many signalling pathways that start from receptors at the cell surface. The evolutionarily conserved amino-terminal region of Cbl (Cbl-N) binds to phosphorylated tyrosine residues and has cell-transforming activity. Point mutations in Cbl that disrupt its recognition of phosphotyrosine also interfere with its negative regulatory function and, in the case of v-cbl, with its oncogenic potential. In T cells, Cbl-N binds to the tyrosine-phosphorylated inhibitory site of the protein tyrosine kinase ZAP-70. Here we describe the crystal structure of Cbl-N, both alone and in complex with a phosphopeptide that represents its binding site in ZAP-70. The structures show that Cbl-N is composed of three interacting domains: a four-helix bundle (4H), an EF-hand calcium-binding domain, and a divergent SH2 domain that was not recognizable from the amino-acid sequence of the protein. The calcium-bound EF hand wedges between the 4H and SH2 domains and roughly determines their relative orientation. In the ligand-occupied structure, the 4H domain packs against the SH2 domain and completes its phosphotyrosine-recognition pocket. Disruption of this binding to ZAP-70 as a result of structure-based mutations in the 4H, EF-hand and SH2 domains confirms that the three domains together form an integrated phosphoprotein-recognition module.  相似文献   

19.
20.
Mutationally activated kinases define a clinically validated class of targets for cancer drug therapy. However, the efficacy of kinase inhibitors in patients whose tumours harbour such alleles is invariably limited by innate or acquired drug resistance. The identification of resistance mechanisms has revealed a recurrent theme—the engagement of survival signals redundant to those transduced by the targeted kinase. Cancer cells typically express multiple receptor tyrosine kinases (RTKs) that mediate signals that converge on common critical downstream cell-survival effectors—most notably, phosphatidylinositol-3-OH kinase (PI(3)K) and mitogen-activated protein kinase (MAPK). Consequently, an increase in RTK-ligand levels, through autocrine tumour-cell production, paracrine contribution from tumour stroma or systemic production, could confer resistance to inhibitors of an oncogenic kinase with a similar signalling output. Here, using a panel of kinase-'addicted' human cancer cell lines, we found that most cells can be rescued from drug sensitivity by simply exposing them to one or more RTK ligands. Among the findings with clinical implications was the observation that hepatocyte growth factor (HGF) confers resistance to the BRAF inhibitor PLX4032 (vemurafenib) in BRAF-mutant melanoma cells. These observations highlight the extensive redundancy of RTK-transduced signalling in cancer cells and the potentially broad role of widely expressed RTK ligands in innate and acquired resistance to drugs targeting oncogenic kinases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号