首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Biopolymer fibers have great potential for technical applications in biomaterials. The surface properties of fibers are of importance in these applications. In this study, electrospun poly(L-lactide)(PLLA)/poly(ε-caprolactone)(PCL) membranes were modified by cold plasma treatment and coating gelatin to improve the surface hydrophilic properties. The morphologies of the fibers were observed by scanning electron microscopy(SEM). Atomic force microscopy(AFM) was employed to show the surface characteristics of the fibers. The chemical feature of the fibrous membrane surfaces was examined by X-ray photoelectron spectroscopy(XPS). The surface wettability of the fibrous membrane was also characterized by water contact angle measurements. All these results show that plasma treatment can have profound effects on the surface properties of fibrous membranes by changing their surface physical and chemical features. Gelatin-PLLA/PCL membrane has great potential in applications of tissue engineering scaffolds.  相似文献   

2.
In the sexual intergeneric hybrids between the cultivated Brassica species and Orychophragmus violaceus, both complete separation and partial separation of the parental genomes were found to occur during mitosis and meiosis under genetic control. The cytogenetics of these hybrids was species-specific for Brassica parents. The different chromosome behavior of hybrids with three Brassica diploids ( B. campestris , B. nigra and B. oleracea ) might contribute to the different cytogenetics of hybrids with three tetraploids ( B. napus, B. juncea and B. carinata). Owing to the parental genome separation, Brassica homozygous plants and aneuploids with various chromosome constitutions were identifiable in the progenies of these hybrids, which were valuable for the study of the structure and evolution of Brassica genome and for the breeding of Brassica crops.  相似文献   

3.
In the present research, 6-mm-thick 5083-H321 aluminum alloy was joined by the double-pulsed gas metal arc welding (DP-GMAW) process. The objective was to investigate the influence of the shielding gas composition on the microstructure and properties of GMA welds. A macrostructural study indicated that the addition of nitrogen and oxygen to the argon shielding gas resulted in better weld penetration. Furthermore, the tensile strength and bending strength of the welds were improved when oxygen and nitrogen (at concentrations as high as approximately 0.1vol%) were added to the shielding gas; however, these properties were adversely affected when the oxygen and nitrogen contents were increased further. This behavior was attributed to the formation of excessive brown and black oxide films on the bead surface, the formation of intermetallic compounds in the weld metal, and the formation of thicker oxide layers on the bead surface with increasing nitrogen and oxygen contents in the argon-based shielding gas. Analysis by energy-dispersive X-ray spectroscopy revealed that most of these compounds are nitrides or oxides.  相似文献   

4.
In general, majority of MOFs are powder, which limit their applications. In this study, the highly stable Zr-based MOF-808 and its thiol-modified MOF-808-SH were selected as precursors, and then they were wrapped by sodium alginate hydrogel via a dripping strategy. Based on these, MOF/hydrogel composite beads(Alg-MOF-808, AlgMOF-808-SH) with 3D network structure were prepared successfully. Due to its excellent adsorption properties and easy recovery, they were employed as effective environmental...  相似文献   

5.
The effects of shot peening on the mechanical properties of steel 1070 were studied to enhance the material's properties and surface characteristics. In this study, pressure and exposure time were the main parameters governing surface hardness and surface roughness. The optimal time duration and pressure were determined after several experimental trials. Changes in hardness and surface roughness were monitored as the pressure of the shot and the exposure time were varied. Furthermore, the microstructure was evaluated by scanning electron microscopy (SEM) and the images were enhanced by image processing techniques to evaluate the surface changes. Pareto charts were constructed to estimate the effects of pressure and time on both surface hardness and surface roughness. The novelty of this study is the concentration on engine blades which are frequently used in aircrafts to determine the optimal time-pressure combination for shot peening to achieve suitable mechanical and surface properties. The results show that shot peening pressure (up to 482.6 kPa for 7 min) has positive effect on enhancing the surface and mechanical properties for steel 1070 blades; however, an increase in either pressure or time above that level adversely affected both surface hardness and surface roughness.  相似文献   

6.
Various types of wound debridement approaches are currently available in clinical practice such as autolytie, enzymatic. biodebridement, mechanical, and surgical debridemenl techniques. A critical look at these various options can explain their potential but also their limitations. In this study, a novel textile pad, which is composed of polyester filaments on the fleecy side and a bioeompatible coating on the opposite side, was made to provide a safe, inexpensive, easier and especially more efficient debridement process that can be used in all healthcare settings by all healthcare practitioners. Eighteen kinds of samples were prepared with different pile density, ground yarn count and coating amount. Dimensional morphology, stitch density, mass per unit area and mechanical properties were investigated to study the intrinsic relationship of structure and properties of textile pad for wound debridement. Results showed that tensile strength and suturing strength at piped site increased obviously with the increment of ground yarn count, while the amount of coating could also have a slight impact on these two properties. However, compressive load was mainly affected by pile density, with no obvious relation to ground yarn count and coating amount.  相似文献   

7.
In this study,the mechanical and wear properties of AISI 316L stainless steel implant materials,produced by powder metallurgy(P/M),were investigated.AISI 316L stainless steel powder was cold-pressed with 800 MPa of pressure and then sintered at 1200,1250 and 1300°C for 30 min as three sample groups.The microstructure,and mechanical and wear properties of the resulting steels were investigated.Light optical and scanning electron microscopiese were used to characterize the microstructure of the steels.Room temperature mechanical properties of the steels were determined by hardness measurements and impact tests.Wear was determined using the pin-on-disc wear test,and the results were evaluated according to weight loss.The results indicate that the sintering temperature,time and atmosphere are important parameters that affect the porous ratio of materials produced by P/M.Sintering at high temperature can eliminate small pores and make the residual pores spherical.The wear tests showed that the wear of the AISI 316L stainless steel implants changed depending on the sintering temperature and load.Spherical pores in the samples increase the wear resistance.Moreover,decreasing the porosity ratio of these materials improves all of their mechanical properties.  相似文献   

8.
This study was designed to evaluate the thermal performance and mechanical properties of coatings with different gradations of TiO2 pigments. The solar reflectance, cooling performance, wash resistance, and film adhesion strength of the coatings were investigated. The influence of TiO2 powder gradation on the final properties of the coatings was studed. The solar reflectance and the thermal insulation were observed to increase with increasing content of nanosized TiO2. The mechanical properties of the coatings, such as their wash resistance and film adhesion strength, were observed to increase with increased incorporation of nanosized TiO2. Such improvements in the properties of the coatings were attributed to the greater specific surface area and lower thermal conductivity of nanosized TiO2 particles compared to normal TiO2 particles.  相似文献   

9.
Mismatch in mechanical properties can induce intimal hyperplasia,which is one of the main reasons for the failure of small diameter artificial blood vessels. Electrospun small diameter tubes with tailored mechanical properties were fabricated through blending poly( L-lactide-co-ε-caprolactone)( PLCL) and silk fibroin( SF)with the mass ratios of 30 /70,50 /50,and 70 /30 in this study.Scanning electron microscopy( SEM) and mechanical testing were used to characterize morphological and mechanical properties of the tubes. Results showed that tensile strength of the tubes was higher than most of the native blood vessels,and elongations at break of them were improved greatly by blending PLCL. Compliances of the tubes were all higher than 1% /13. 33 kPa( 1% /100 mmHg).Particularly,tubes with blending mass ratio of 50 /50 showed similar compliance with human native femoral arteries,which provided a promising biomaterial that could be applied on small diameter vascular applications.  相似文献   

10.
An experimental study was conducted to improve the electrical insulation of epoxy resin. The effects of boehmite, γ-alumina and α-alumina nanoparticles on the volume resistivity, dielectric strength and glass transition temperature of epoxy nanocomposites were investigated. The results showed that α-alumina nanoparticles displayed obvious advantages in enhancing electrical insulation performance of epoxy nanocomposites, compared to boehmite and γ-alumina nanoparticles. The direct current volume resistivity and breakdown strength of epoxy nanocomposite with 2.0 wt% α-alumina nanoparticles was improved to 2.2 × 10~(18)Ω cm and76.1 kV mm~(-1) respectively. And these improved values of electrical insulation properties are much higher than these of epoxy nanocomposites reported in previous studies. The main reason of these improvements may be that the epoxy/α-alumina interaction zone was enhanced by crosslink.  相似文献   

11.
Mn2V2O7 thin films were deposited onto amorphous glass substrates using a chemical bath deposition method and different deposition time. X-ray diffraction (XRD) analysis was used to define the structure of the films. Their roughness, thickness, and surface properties were evaluated through atomic force microscopy (AFM). The hardness of the films was measured using a nanohardness tester. The film thickness, average grain size, and roughness were positively correlated with each other. These three parameters were observed to increase with the deposition time. The film thickness and average grain size were inversely correlated with the hardness and rough-ness. In addition, the number of crystallites per unit area and the dislocation density were observed to be positively correlated with the hardness and roughness. This study was designed to elucidate and formalize the underlying reasons for these relationships.  相似文献   

12.
Bulk metallic glass (BMG) composites with the austenite B2 phase as reinforcement macroscopically showed strain hardening behavior due to the plasticity induced by martensitic transformation during deformation. Relationship between characteristics of the B2-CuZr reinforcing phase and uniaxial compressive properties of CuZr-based BMG composites was studied. Mechanical properties of these BMG composites were found to depend on not only the reinforced phases but also the amorphous matrix,and the yield and fracture strength can be roughly estimated by the rule of mixture principle. Distribution of the reinforced B2-CuZr phase has an important impact on the compressive plasticity even for the composites with a similar volume fraction of the crystalline phase.  相似文献   

13.
1 Results Quasi one-dimensional nanostructured materials have received considerable attention due to their unique optical and electrical properties and potential applications in nanodevices.Much effort has been directed toward exploring novel synthetic methods and understanding the chemical and physical properties of these nanostructures.The chemical vapor deposition and thermal evaporation,are proved to be efficient for the preparation of wirelike nanomaterials,however these methods are quite energy consuming.The soft-chemical routes are recently focused with much interest on the preparation of such nanostructures of metastable oxide materials.  相似文献   

14.
Polythiourea resin was synthesised with thiourea and formaldehyde and characterized by Fourier transform infrared spectroscopy (FT-IR). The effects of temperature, time, pH and initial concentration on the properties of polythiourea resin adsorption influence to silver ions were discussed by static adsorption method. In addition, experiments have also been carried out on the study of adsorption isotherm. In order to further understand the adsorption characteristics of polythiourea resin, the adsorption functional characteristics of Ag(Ⅰ) were studied by density functional B3LYP method.  相似文献   

15.
张利  Li  Yubao  Zhou  Gang  Wu  Lan  Mu  Yuanhua  Yang  Zheng 《高技术通讯(英文版)》2007,13(1):31-35
Chitosan/nano-hydroxyapatite composites with different weight ratios were prepared through a co-precipitation method using Ca(OH)2, H3PO4 and chitosan as starting materials. The properties of these composites were characterized by means of TEM, IR, XRD, TGA, burn-out tests and universal matertial testing machine. The results showed that the HA synthesized here was poorly crystalline carbonated nanometer crystals and dispersed uniformly in chitosan phase and there was no phase-separation between the two phases. The addition of n-HA resulted in a decrease of decomposing temperature of chitosan. Because of the interactions between chitosan and n-HA, the mechanical properties of these composites were improved, and the maximum value of the compressive strength was measured to be about 120MPa corresponding to the chitosan/n-HA composite with a weight ratio of 30/70.  相似文献   

16.
A new entire biodegradable scaffold has been developed which does not require precelluiarization before transplantation. This new kind of vascular scaffold prototype made from porous poly- e-caprolactone (PCL) membrane to provide three-dimensional environment for cell growth, and embedded with weft-knitted polylactic acid (PLA) fabric to support mechanics. The aim of this paper is to study the variation tendency of mechanical properties with the fabric spacing changing. The basic geometrical parameters were measured to characterize properties of the samples. The tensile and compressive elastic recovery of the samples were tested by the universal mechanical tester and radial compression apparatus, respectively. Both tensile and compressive properties enhanced when reducing the fabric spacing of the composite vascular scaffold.  相似文献   

17.
After run-in analysis of Raschel warp knitting,the dry and wet relaxation treatments of twelvetwo-bar warp knitted fabrics having six different knitting tightnesses were made,and some physi-cal properties of these fabrics which had been finished were tested.On the basis of these experi-ments,the effect of run-in value on dimensional properties and the relationships between run-invalue and physical properties are discussed and analysed.  相似文献   

18.
Magnetic measurements were performed on apparently deformed igneous rocks of 23 sites from the southeastern part of the Taimyr Peninsula. Rock magnetism and reflected light microscopy analyses reveal that fine-grained titsnomagnetites up to pure magnetites mainly carry the majority of magnetic fabrics in the sills, and that the slightly coarser Ti-poor or -medium titsnomagnetites carry most mag-netic fabrics in the basaltic flows. Magnetic anisotropies were determined by applying anisotropy of low-field magnetic susceptibility (AMS) on 180 unheated samples and 128 samples that had been pre-viously heated to 600℃ during a paleomagnetic study to detect heating effects on the anisotropy of magnetic susceptibility (AMS) properties of volcanic rocks. Laboratory heating significantly affects anisotropy variations of these igneous rocks corresponding to the mineralogical changes during the heat treatment.  相似文献   

19.
Multiferroics exhibit unique combination of ferroic properties,simultaneously.For instance,in BiFeO3,magnetic and electric properties co-exist.In this work,BiFeO3 and Sr-doped BiFeO3 samples with general formula,Bi1-x Srx FeO3(x=0.00,0.05,0.10,0.20,and 0.30) were synthesized by sol-gel auto-combustion technique,in order to investigate these ferroic properties.The samples were confrmed to have perovskite type rhombohedral structure,characteristic of BiFeO3.A dilute phase of Bi2Fe4O9was also found in all the Sr-doped samples.The micrographs of the palletized samples revealed that minutely doped Sr might not have any effect on the morphology of the samples.Frequency dependent dielectric measurements were carried out at room temperature for all the samples from 100 Hz to 1 MHz.The dielectric constant of un-doped sample at low frequency was 52 which decreased with increasing Sr doping.An enhancement of magnetic properties was observed with increasing the Sr contents.Pure BiFeO3 material was observed to have the least value of remanent magnetization.As the Sr2+ tions were doped in BiFeO3,its magnetization and remanence were increased to 0.867 emu/g and 0.175 emu/g,respectively,at x=0.30.  相似文献   

20.
Al2O3 and TiN inclusions in interstitial-free (IF) steel deteriorate the properties of the steel. To decrease the defects of cold-rolled sheet, it is important to clearly distinguish between the degrees of damage caused by these two inclusions on the surface quality of the steel. In this study, a nanoindenter was used to test the mechanical properties of the inclusions, and the distribution and size of the inclusions were obtained by scanning electron microscopy (SEM). It was found that when only mechanical properties are considered, TiN inclusions are more likely to cause defects than Al2O3 inclusions of the same size during the rolling process. However, Al2O3 inclusions are generally more inclined to cause defects in the rolling process than TiN inclusions because of their distribution characteristic in the thickness direction. The precipitation of Al2O3 and TiN was obtained through thermodynamical calculations. The growth laws of inclusions at different cooling rates were calculated by solidification and segregation models. The results show that the precipitation regularity is closely related to the distribution law of the inclusions in IF slabs along the thickness direction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号