首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The oxidation behavior of a nickel-based superalloy at 1000℃ in air was investigated through X-ray diffraction, scanning electron microscopy, and energy-dispersive spectroscopy analysis. A series of oxides, including external oxide scales (Cr2O3, (TiO2 + MnCr2O4)) and internal oxides (Al2O3,TiN), were formed on the surface or sub-surface of the substrate at 1000℃ in experimental still air. The oxidation resistance of the alloy was dependent on the stability of the surface oxide layer. The continuity and density of the protective Cr2O3 scale were affected by minor alloying elements such as Ti and Mn. The outermost oxide scale was composed of TiO2 rutile and MnCr2O4 spinel, and the growth of TiO2 particles was controlled by the outer diffusion of Ti ions through the pre-existing oxide layer. Severe internal oxidation occurred beneath the external oxide scale, consuming Al and Ti of the strength phase γ' (Ni3(Al,Ti)) and thereby severely deteriorating the surface mechanical properties. The depth of the internal oxidation region was approximately 35 μm after exposure to experimental air at 1000℃ for 80 h.  相似文献   

2.
CoCrCuFeNi-TiO was prepared by arc melting of the pure elements and Ti2CO powder under an Ar atmosphere. Both CoCrCuFeNi and CoCrCuFeNi-TiO alloys are composed of a face-centered cubic (fcc) solid solution, whereas the alloys of CoCrCuFeNi-TiO are basically composed of an fcc solid solution and TiO crystals. The microstructures of CoCrCuFeNi-TiO are identified as dendrite and interdendrite structures such as CoCrCuFeNi. The morphology of TiO is identified as an equiaxed crystal with a small amount of added Ti2CO. By increasing the amount of Ti2CO added, the TiO content was dramatically increased and part of the equiaxed crystals changed to a dendrite structure. A test of the oxidation resistance demonstrates that the oxidation resistance of CoCrCuFeNi-TiO is better than that of CoCrCuFeNi. However, as the TiO content increases further, a corresponding decrease is observed in the oxidation resistance.  相似文献   

3.
To enhance the CO-tolerance performance of anode catalysts for direct ethanol fuel cells,carbon nanotubes were modified by titanium dioxide (donated as CNTs@TiO2) and subsequently served as the support for the preparation of Pt/CNTs@TiO2 and Pt-Mo/CNTs@TiO2 electrocatalysts via a UV-photoreduction method.The physicochemical characterizations of the catalysts were carried out by using X-ray diffraction (XRD),transmission electron microscopy (TEM),X-ray photoelectron spectroscopy (XPS),and infrared spectroscopy of adsorbed probe ammonia molecules.The electrocatalytic properties of the catalysts for methanol oxidation were investigated by the cyclic voltammetry technique.The results show that Pt-Mo/CNTs@TiO2 electrode exhibits the highest performance in all the electrodes.It is explained that,the structure,the oxidation states,and the acid-base properties of the catalysts are influenced due to the strong interaction between Ti and Mo species by adding TiO2 and MoOx to the Pt-based catalysts.  相似文献   

4.
In order to improve the anti-oxidation of C/C composites, a SiC–MoSi2multi-phase coating for SiC coated carbon/carbon composites(C/C)was prepared by low pressure chemical vapor deposition(LPCVD) using methyltrichlorosilane(MTS) as precursor, combined with slurry painting from MoSi2 powder. The phase composition and morphology were analyzed by scanning electron microscope(SEM) and X-ray diffraction(XRD) methods, and the deposition mechanism was discussed. The isothermal oxidation and thermal shock resistance were investigated in a furnace containing air environment at 1500 1C. The results show that the as-prepared SiC–MoSi2coating consists of MoSi2 particles as a dispersing phase and CVD–SiC as a continuous phase. The weight loss of the coated samples is 1.51% after oxidation at 1500 1C for 90 h, and 4.79% after 30 thermal cycles between 1500 1C and room temperature. The penetrable cracks and cavities in the coating served as the diffusion channel of oxygen, resulted in the oxidation of C/C composites, and led to the weight loss in oxidation.  相似文献   

5.
Plasma surface alloying of element Nb in TiAl-based alloys and the oxidation behavior were studied. The composition and microstructure of the surface alloyed layers were investigated by means of scanning electron microscopy (SEM),energy dispersive X-ray analysis (EDX),and X-ray diffraction (XRD). The experimental results indicate that the diffusion layers are formed on the TiAl substrate during the plasma niobizing process. The result from oxidation resistance investigation shows that plasma niobizing greatly improves the oxidation resistance of TiAl compared with the untreated TiAl. The role of element Nb for improving the oxidation resistance is considered to be achieved by strengthening the activity of Al,which is induced by the plasma niobizing process.  相似文献   

6.
In this work, the morphology, phase composition, and corrosion properties of microarc oxidized (MAO) gas tungsten arc (GTA) weldments of AZ31 alloy were investigated. Autogenous gas tungsten arc welds were made as full penetration bead-on-plate welding under the alternating-current mode. A uniform oxide layer was developed on the surface of the specimens with MAO treatment in silicate-based alkaline electrolytes for different oxidation times. The corrosion behavior of the samples was evaluated by potentiodynamic polarization and electrochemical impedance spectroscopy. The oxide film improved the corrosion resistance substantially compared to the uncoated specimens. The sample coated for 10 min exhibited better corrosion properties. The corrosion resistance of the coatings was concluded to strongly depend on the morphology, whereas the phase composition and thickness were concluded to only slightly affect the corrosion resistance.  相似文献   

7.
A uniform, dense and defect free Cr2O3 thin film, which is amorphous at ambient temperature, was applied on the surface of intermetallic Fe3Al by electrodeposition reaction sintering, and the effect of this film on the oxidation of Fe3Al at 900℃ in air was studied. The films and the oxide scales were analyzed by TEM, EDAX,SEM and XRD.It is proved that, by surface applied Cr2O3 thin film,a continuous, protective,fine grained α-Al2O3 scale was formed on Fe3Al. As a result, the adherence of the scale and oxidation resistance of Fe3Al were improved.  相似文献   

8.
A NiTi shape memory alloy (SMA) modified by Ta ion implantation was subjected to oxidation treatment in air at 723 and 873 K. Atomic force microscopy (AFM), Auger electron spectroscopy (AES), and grazing incidence X-ray diffraction (GIXRD) measurements were conducted to investigate the surface characteristics, including surface topography, elemental depth profiles, and surface phase structures. The surface roughness of the Ta-implanted NiTi increases after oxidation, and the higher the oxidation temperature is, the larger the value is. The surface of the Ta-implanted NiTi oxidized at 723 K is a nanolayer mainly composed of TiO2/Ta2O5 and TiO with depressed Ni content. The Ta-implanted NiTi oxidized at 873 K is mainly covered by rutile TiO2 in several micrometers of thickness. Potentiodynamic polarization tests indicated that the corrosion resistance of the Ta-implanted NiTi was improved after thermal oxidation at 723 K, but a negative impact was found for the Ta-implanted NiTi oxidized at 873 K.  相似文献   

9.
《矿物冶金与材料学报》2020,27(9):1281-1286
The surface treatment is important for titanium and its alloys as promising candidates for dental implantation due to their bioinert surface. Titanium surface samples were modified using H2O2 solution at different times up to 72 h to boost their bioactivity. According to the results of the field emission scanning electron microscopy test, some nanostructures are formed on the surface of treated titanium samples and increased in size by increasing the time of treatment up to 24 h. After 24 h of application, the sharpness of nanostructures decreased and the micro-cracks and discontinuity in the coating surface increased. The results of the X-ray diffraction study and Raman spectroscopy revealed that anatase (TiO2) was formed on the surface of treated titanium samples. The peak intensity of Raman spectroscopy increased with an improvement in treatment time of up to 24 h and then decreased due to the discontinuity of the coating. Full wettability and ability to form apatite were reached at 6 h of treatment. It is clear that the treatment time has a significant effect on the surface treatment of titanium using the H2O2 solution.  相似文献   

10.
《矿物冶金与材料学报》2021,28(12):1957-1965
To investigate the oxidation behavior of a nickel-based superalloy with high hafnium content (1.34wt%), this study performed isothermal oxidation tests at 900, 1000, and 1100°C for up to 200 h. X-ray diffraction and scanning electron microscopy with energy-dispersive X-ray spectroscopy were applied to study the oxidation behavior. The weight gain of the high Hf nickel-based superalloy exhibited a parabola-like curve, and no spallation of the oxide scale was observed during the oxidation tests. The alloy presented excellent oxidation resistance, and no HfO2 was observed in the oxide scale at 900°C. With the increase of the oxidation temperature to 1000°C, HfO2 particles formed in the spinel phases of the scale, and “peg-like” HfO2 was observed within and beneath the inner layer of Al2O3 after 200 h. As the oxidation temperature rose to 1100°C, “peg-like” HfO2 was observed at the early stage of the oxidation test (within 25 h). The formation mechanism of HfO2 and its impact on oxidation resistance were investigated based on the analysis of the oxidation test results at different temperatures.  相似文献   

11.
The corrosion-wear behavior of a nanocrystalline Fe88Si12 alloy disc coupled with a Si3N4 ball was investigated in acid (pH 3) and alkaline (pH 9) aqueous solutions. The dry wear was also measured for reference. The average friction coefficient of Fe88Si12 alloy in the pH 9 solution was approximately 0.2, which was lower than those observed for Fe88Si12 alloy in the pH 3 solution and in the case of dry wear. The fluctuation of the friction coefficient of samples subjected to the pH 9 solution also showed similar characteristics. The wear rate in the pH 9 solution slightly increased with increasing applied load. The wear rate was approximately one order of magnitude less than that in the pH 3 solution and was far lower than that in the case of dry wear, especially at high applied load. The wear traces of Fe88Si12 alloy under different wear conditions were examined and analyzed by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy. The results indicated that the tribo-chemical reactions that involve oxidation of the worn surface and hydrolysis of the Si3N4 ball in the acid solution were restricted in the pH 9 aqueous solution. Thus, water lubrication can effectively improve the wear resistance of nanocrystalline Fe88Si12 alloy in the pH 9 aqueous solution.  相似文献   

12.
Micro-crystalline coatings of 310S stainless steels were produced by unbalanced magnetron sputter deposition. Isothermal oxidation behavior of the coated and uncoated specimens has been studied using a thermogravimetric analysis (TGA) station. The oxidation time was 50h and the temperature was 1 000℃. The oxidation rates of the coated specimens was found to be much lower than the uncoated specimens after 50 h of oxidation. The oxidation kinetic curves of the coated specimens consisted of three stages: approximately parabolic at the first stage, speeding up at the second stage, and slow down at the third stage. The increase of the oxidation rate at the second stage nasattributed to the fast diffuison of Fe though the fine grained Cr2O3 layer formed on the micro-crystalline coatings.The top view and cross-section microstructures of the oxides formed on the coated and the uncoated specimens were studied with SEM and EDS. It was observed that the nucleation of oxide on the coated specimens was much enhanced at the initial oxidation stage. This was explained as the result of reduction in the critical free energy change and increase in the supply of chromium ions.  相似文献   

13.
A simple surface treatment was used to develop photocatalytic activity for stainless steel. AISI 304 stainless steel specimens after anodization were implanted by Ti ions at an extracting voltage of 50 kV with an implantation dose of 3 × 1015 atoms·cm?2 and then annealed in air at 450℃ for 2 h. The morphology was observed by scanning electron microscopy. The microstructure was characterized by X-ray diffraction and X-ray photoelectron spectroscopy. The photocatalytic degradation of methylene blue solution was carried out under ultraviolet light. The corrosion resistance of the stainless steel was evaluated in NaCl solution (3.5 wt%) by electrochemical polarization curves. It is found that the Ti ions depth profile resembles a Gaussian distribution in the implanted layer. The nanostructured Fe2O3/TiO2 composite film exhibits a remarkable enhancement in photocatalytic activity referenced to the mechanically polished specimen and anodized specimen. Meanwhile, the annealed Ti-implanted specimen remains good corrosion resistance.  相似文献   

14.
Shape memory alloys (SMA) have been applied to a wide variety of applications in a number of different fields such as aeronautical applications, sensors/actuators, medical sciences as well as orthodontics. It is a hot topic to enhance the anti-corrosion ability of orthodontic wires for clinical applications. In this letter, a very nice fractal structure, micro-domains with identical nanometer sized grooves, was ob- tained on the surfaces of the orthodontic wires with an oxygen plasma and acid corrosion. The concave parts of the grooves were dominated by titanium and convex parts were the same as the bulk wires. The micro-nano fractal structure generated a hydrophobic surface with the largest contact angle to water being about 157°. The titanium dominated nanolayer and the hydrophobicity of the surface resulted in jointly the great improvement of the anti-corrosion ability of the orthodontic wires. Because the fractal structures of the wires were formed automatically when they immersed in acidic environment, hence, the self-protection of the oxygen plasma-treated orthodontic wires in acidic environment indicates their potential applications in orthodontics, and should be also inspirable for other applications of SMA materials.  相似文献   

15.
The effect of NaNO3 concentration on the anodic electrochemical behavior of antimony in 4 M NaOH solution was investigated using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) analyses. The mechanism of NO3- concentration effect on the anodic electrochemical behavior of antimony was proposed, and its availability was confirmed by experimental results. The effect of NaNO3 on the anodic behavior of antimony in NaOH solution can be interpreted as a stepwise formation of different antimony compounds with different NaNO3 concentrations. Metallic antimony is apt to be oxidized into Sb2O3 within the NaNO3 concentration range of 0-0.48 M. NaSbO3 can be found on the antimony surface when the NaNO3 concentration increases gradually. Insoluable NaSbO3 inhibits the anodic oxidation of antimony due to its shielding effect on the mass transport of the reactants and products. Surface morphology and composition were analyzed by X-ray photoelectron spectroscopy (XPS), scanning electronic microscopy (SEM), and electron dispersion spectroscopy (EDS) analyses. Results indicate that the anodic oxidation layer is composed of Sb2O3, NaSbO3, and Sb. The atomic proportion of antimony in the form of NaSbO3 increases with increasing NaNO3 concentration due to the powerful oxidizing property of NaNO3.  相似文献   

16.
<正>To explore and study the Fe-Al system alloy presenting exceptional oxidation resistance at high temperature,the Fe-36Al-0.09C-0.09B-0.04Zr alloy was designed and developed.The microstructure and hardness of the backing at 1250℃were analyzed and measured.Thermodynamics and kinetics of the oxidation behavior were also analyzed by X-ray diffraction,scanning electron microscopy, and energy-dispersive X-ray spectroscopy techniques.The results show that the microstructure of the Fe-36Al-0.09C-0.09B-0.04Zr alloy is FeAl phase at ambient temperature and is stable at 1250℃.It displays the excellent property of oxidation resistance because the oxide film has only the Al_2O_3 layer,and its oxidation kinetics curve obeys the parabolic law at 1250℃.The oxidation mechanism at 1250℃is presumed that in the early oxidation period,the alloy oxidizes to form a large number of Al_2O_3 and a little Fe_2O_3,then,the enrichment of Al caused by Fe oxidization combines with O to form Al_2O_3.  相似文献   

17.
An innovative and sustainable carbothermal reduction and nitridation (CTRN) process of ilmenite (FeTiO3) using a mixture of polyethylene terephthalate (PET) and coal as the primary reductant under an H2-N2 atmosphere was proposed.The use of PET as an alternative source of carbon not only enhances the porosity of the pellets but also results in the separation of Fe from titanium oxycarbonitride (TiOxCyNz) particles because of the differences in surface tension.The experiments were carried out at 1250℃ for 3 h using four different PET contents ranging from 25wt% to 100wt% in the reductant.X-ray diffraction (XRD),scanning electron microscopy (SEM) in conjunction with energy-dispersive X-ray spectroscopy (EDX),and LECO elemental analysis were used to study the phases and microstructures of the reduced samples.In the case of 75wt% PET,iron distinctly separated from the synthesized TiOxCyNz phase.With increasing PET content in the sample,the reduction and nitridation rates substantially increased.The synthesis of an oxycarbonitride with stoichiometry of TiO0.02C0.13N0.85 with minimal intermediate titanium sub-oxides was achieved.The results also showed that the iron particles formed from CTRN of FeTiO3 exhibited a spherical morphology,which is conducive for Fe removal via the Becher process.  相似文献   

18.
The effect of atomic oxygen(AO) on the surface oxidation of several typical Cu-based bulk metallic glasses(BMGs) was studied in the present work.The AO source using in this study is generated by discharge plasma type ground simulation equipment.The AO erosion/oxidation resistances of the amorphous alloy samples were assessed based on the analysis of mass loss,surface color and microstructure.It is found that these Cu-based BMGs possess good AO erosion/oxidation resistance and their resistance to AO erosion/oxidation strongly depends on the chemical composition.For the samples containing more Ag and/or Cu,the AO erosion/oxidation resistance is weaker.The present result is important for designing new metallic glasses using as space materials.  相似文献   

19.
NiOx/Ni81Fe19 and Co/AlOx/Co magnetic multilayers were fabricated by reactive RF/DC magnetron sputtering on clean glass substrates and oxidized Si (100) substrates, respectively. The exchange biasing field (Hex) between NiOx and Ni81Fe19 as a function of NiOx oxidation states was studied by X-ray photoelectron spectroscopy (XPS). The oxidation states and the oxide thickness of Al layers in magnetic multilayer films consisting of Co/AlOx/Co were also analyzed. It is found that the Hex of NiOx/Ni81Fe19 films only depends on Ni2+ but not on Ni3+ or Ni. The bottom Co can be completely covered by depositing an Al layer thicker than 2.0 nm. The oxide layer was Al2O3, and its thickness was 1.15 mn.  相似文献   

20.
The reduction of titanomagnetite (TTM) ironsand, which contains 11.41wt% TiO2 and 55.63wt% total Fe, by graphite was performed using a thermogravimetric analysis system under an argon gas atmosphere at 1423–1623 K. The behavior and effects of titanium in TTM ironsand during the reduction process were investigated by means of thermogravimetric analysis, X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. During the reduction procedure, the titanium concentrated in the slag phase, where the phase transformation followed this sequence: FeO + FeTiO3 → Fe2TiO4 → FeTiO3 → FeTi2O5 → TiO2. The calculated results for the reduction kinetics showed that the carbothermic reduction was controlled by the diffusion of ions through the product layer. Furthermore, the apparent activation energy was 170.35 kJ·mol-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号