首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
采用Al--KBF4--K2ZrF6组元通过熔体直接反应法制备了ZrB2颗粒增强铝基复合材料,优化的初始合成温度范围为850~870℃,反应时间为25~30 min.扫描电镜观察结果显示:ZrB2颗粒尺寸为300~400 nm,颗粒间距200 nm左右,有团簇现象,团簇体尺寸为30~40μm.当颗粒理论体积分数为3%时,单位熔体体积内ZrB2颗粒形核数量为6.68×1017 m-3,平均线长大速率为47.3nm.s-1.分析团簇原因认为:大量细小高熔点ZrB2增加了熔体黏度,颗粒扩散阻力大,限制了颗粒迁移位移;ZrB2颗粒因密度大具有较高的沉降速率.原位反应过程分析表明:通过Al3Zr--AlB2间的分子化合及[Zr]--[B]间的原子化合得到ZrB2颗粒,是高温稳定相.  相似文献   

2.
Fe3O4@SiO2 core–shell composite nanoparticles were successfully prepared by a one-pot process. Tetraethyl-orthosilicate was used as a surfactant to synthesize Fe3O4@SiO2 core–shell structures from prepared Fe3O4 nanoparticles. The properties of the Fe3O4 and Fe3O4@SiO2 composite nanoparticles were studied by X-ray diffraction, transmission electron microscopy, energy dispersive spectroscopy, and Fourier transform infrared spectroscopy. The prepared Fe3O4 particles were approximately 12 nm in size, and the thickness of the SiO2 coating was approximately 4 nm. The magnetic properties were studied by vibrating sample magnetometry. The results show that the maximum saturation magnetization of the Fe3O4@SiO2 powder (34.85 A·m2·kg–1) was markedly lower than that of the Fe3O4 powder (79.55 A·m2·kg–1), which demonstrates that Fe3O4 was successfully wrapped by SiO2. The Fe3O4@SiO2 composite nanoparticles have broad prospects in biomedical applications; thus, our next study will apply them in magnetic resonance imaging.  相似文献   

3.
In this study, we investigated the effect of the addition of Sr (0wt%, 0.1wt%, 0.2wt%, and 0.3wt%) on the microstructure and corrosion behavior of Al3Ti/ADC12 composite by optical microscopy, X-ray diffraction, scanning electron microscopy, and energy diffraction spectroscopy. The results reveal that the α-Al phases were nearly spherical and 40 μm in size and that the eutectic Si phases became round in the composite when the Sr content reached 0.2wt%. The Al3Ti particles were distributed uniformly at the grain boundary. The results of the corrosion examination reveal that the Al3Ti/ADC12 composite exhibited a minimum corrosion rate of 0.081 g·m–2·h–1 for an Sr content of 0.2wt%, which is two thirds of that of unmodified composite (0.134 g·m–2·h–1). This improved corrosion resistance was due to galvanic corrosion, which resulted from the low area ratio of the cathode to anode regions. This caused a low-density corrosion current in the composite, thereby yielding optimum corrosion resistance.  相似文献   

4.
A chemical precipitation-thermal decomposition method was developed to synthesize Co3O4 nanoparticles using cobalt liquor obtained from the atmospheric pressure acid leaching process of nickel laterite ores. The effects of the precursor reaction temperature, the concentration of Co2+, and the calcination temperature on the specific surface area, morphology, and the electrochemical behavior of the obtained Co3O4 particles were investigated. The precursor basic cobaltous carbonate and cobaltosic oxide products were characterized and analyzed by Fourier transform infrared spectroscopy, thermogravimetric differential thermal analysis, X-ray diffraction, field-emission scanning electron microscopy, specific surface area analysis, and electrochemical analysis. The results indicate that the specific surface area of the Co3O4 particles with a diameter of 30 nm, which were obtained under the optimum conditions of a precursor reaction temperature of 30℃, 0.25 mol/L Co2+, and a calcination temperature of 350℃, was 48.89 m2/g. Electrodes fabricated using Co3O4 nanoparticles exhibited good electrochemical properties, with a specific capacitance of 216.3 F/g at a scan rate of 100 mV/s.  相似文献   

5.
Al2O3/TiO2/Fe2O3/Yb2O3 composite powder was synthesized via the sol-gel method. The structure, morphology, and radar-absorption properties of the composite powder were characterized by transmission electron microscopy, X-ray diffraction analysis and RF impedance analysis. The results show that two types of particles exist in the composite powder. One is irregular flakes (100-200 nm) and the other is spherical Al2O3 particles (smaller than 80 nm). Electromagnetic wave attenuation is mostly achieved by dielectric loss. The maximum value of the dissipation factor reaches 0.76 (at 15.68 GHz) in the frequency range of 2-18 GHz. The electromagnetic absorption of waves covers 2-18 GHz with the matching thicknesses of 1.5-4.5 mm. The absorption peak shifts to the lower-frequency area with increasing matching thickness. The effective absorption band covers the frequency range of 2.16-9.76 GHz, and the maximum absorption peak reaches -20.18 dB with a matching thickness of 3.5 mm at a frequency of 3.52 GHz.  相似文献   

6.
Amorphous spherical silica powders were prepared by inductively coupled thermal plasma treatment at a radio frequency of 36.2 MHz. The effects of the added content of hydrogen and nitrogen into argon (serving as the sheath gas), as well as the carrier gas flow rate, on the spheroidization rate of silica powders, were investigated. The prepared silica powders before and after plasma treatment were examined by scanning electron microscopy, X-ray diffraction, and laser granulometric analysis. Results indicated that the average size of the silica particles increased, and the transformation of crystals into the amorphous state occurred after plasma treatment. Discharge image processing was employed to analyze the effect of the plasma temperature field on the spheroidization rate. The spheroidization rate of the silica powder increased with the increase of the hydrogen content in the sheath gas. On the other hand, the spheroidization rate of the silica power first increased and then decreased with the increase of the nitrogen content in the sheath gas. Moreover, the amorphous content increased with the increase of the spheroidization rate of the silica powder.  相似文献   

7.
A spherical-like Ni0.6Co0.2Mn0.2(OH)2 precursor was tuned homogeneously to synthesize LiNi0.6Co0.2Mn0.2O2 as a cathode material for lithium-ion batteries. The effects of calcination temperature on the crystal structure, morphology, and the electrochemical performance of the as-prepared LiNi0.6Co0.2Mn0.2O2 were investigated in detail. The as-prepared material was characterized by X-ray diffraction, scanning electron microscopy, laser particle size analysis, charge-discharge tests, and cyclic voltammetry measurements. The results show that the spherical-like LiNi0.6Co0.2Mn0.2O2 material obtained by calcination at 900℃ displayed the most significant layered structure among samples calcined at various temperatures, with a particle size of approximately 10 μm. It delivered an initial discharge capacity of 189.2 mAh·g-1 at 0.2C with a capacity retention of 94.0% after 100 cycles between 2.7 and 4.3 V. The as-prepared cathode material also exhibited good rate performance, with a discharge capacity of 119.6 mAh·g-1 at 5C. Furthermore, within the cut-off voltage ranges from 2.7 to 4.3, 4.4, and 4.5 V, the initial discharge capacities of the calcined samples were 170.7, 180.9, and 192.8 mAh·g-1, respectively, at a rate of 1C. The corresponding retentions were 86.8%, 80.3%, and 74.4% after 200 cycles, respectively.  相似文献   

8.
瓦斯爆炸过程中视窗处出现的亮斑现象,分析确定为爆炸过程中产生的有高热辐射特性的炭黑。利用低温液氮吸附比表面积分析仪、扫描电镜(SEM)、透射电镜(TEM)和傅里叶红外光谱等方法,分析了瓦斯浓度下爆炸产生炭黑的孔径分布和表面结构。研究结果表明,炭黑的比表面积为1.507m2·g-1(DFT),总孔容为4×10-3cm3·g-1。SEM图像显示炭黑颗粒由大量球状物聚集体组成,直径在4~50μm。颗粒表面孔隙高度发育,部分表面有熔融烧结特征;TEM扫描结果显示形成聚集体的颗粒直径大都在100nm左右,粒子间彼此结合,形成链枝结构的炭黑聚集体,放大到8nm可以明显看到初级粒子内部有石墨状的晶格条纹;红外光谱分析结果表明炭黑颗粒内含有大量芳香烃结构,C-H、C-O结构、芳香族及取代苯官能团广泛存在。   相似文献   

9.
To improve the hydrogen storage properties of Mg-based alloys, a composite material of MgH2 + 10wt%LaH3 + 10wt%NbH was prepared by a mechanical milling method. The composite exhibited favorable hydrogen desorption properties, releasing 0.67wt% H2 within 20 min at 548 K, which was ascribed to the co-catalytic effect of LaH3 and NbH upon dehydriding of MgH2. By contrast, pure MgH2, an MgH2 + 20wt%LaH3 composite, and an MgH2 + 20wt%NbH composite only released 0.1wt%, 0.28wt%, and 0.57wt% H2, respectively, under the same conditions. Analyses by X-ray diffraction and scanning electron microscopy showed that the composite particle size was small. Energy-dispersive X-ray spectroscopic mapping demonstrated that La and Nb were distributed homogeneously in the matrix. Differential thermal analysis revealed that the dehydriding peak temperature of the MgH2 + 10wt%LaH3 + 10wt%NbH composite was 595.03 K, which was 94.26 K lower than that of pure MgH2. The introduction of LaH3 and NbH was beneficial to the hydrogen storage performance of MgH2.  相似文献   

10.
Diatomite-based porous ceramics were adopted as carriers to immobilize nano-TiO2 via a hydrolysis-deposition technique. The thermal degradation of as-prepared composites was investigated using thermogravimetric-differential thermal analysis, and the phase and microstructure were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, and transmission electron microscopy. The results indicated that the carriers were encapsulated by nano-TiO2 with a thickness of 300-450 nm. The main crystalline phase of TiO2 calcined at 650℃ was anatase, and the average grain size was 8.3 nm. The FT-IR absorption bands at 955.38 cm-1 suggested that new chemical bonds among Ti, O, and Si had formed in the composites. The photocatalytic (PC) activity of the composites was investigated under UV irradiation. Furthermore, the photodegradation kinetics of formaldehyde was investigated using the composites as the cores of an air cleaner. A kinetics study showed that the reaction rate constants of the gas-phase PC reaction of formaldehyde were κ=0.576 mg·m-3·min-1 and K=0.048 m3.  相似文献   

11.
Nanosized TiO2 particles were prepared by solvothermal method using tetrabutyl titanate as precursor,ethanol and water as solvents,and a facile immobilization method of nanosized TiO2 particles on woven glass fabric was developed. The samples obtained under various preparation conditions were charac-terized by means of thermo gravimetric analysis(TG) and differential scanning calorimetry(DSC) ,X-ray diffraction(XRD) ,transmission electron microscopy(TEM) ,high resolution-transmission electron mi-croscopy(HR-TEM) ,and Brunauer-Emmett-Teller(BET) . The results show that the cube-shape of TiO2 prepared by solvothermal method has good crystallinity of(101) surface,higher thermal stability and large specific surface area. Scanning electron microscopy(SEM) images confirmed that the immobi-lized TiO2 film was uniformly distributed and clung to the substrate firmly. The photocatalytic activity of the catalysts was tested using photocatalytic oxidation of gaseous benzene. The results show that the TiO2 calcined after solvothermal treatment suffers from lower specific surface area,and hence de-creases its photocatalytic activity. The photocatalytic activities of the TiO2 by solvothermal treatment with or without calcination in degradation 400 mg/m3 benzene are 3.7 and 4.1 times as high as catalyst without solvothermal treatment,respectively.  相似文献   

12.
Nanocrystalline NiCrC alloy powders with a qualified particle size distribution for thermal spraying were synthesized using the cryogenic ball milling (cryomilling) method. The morphology, microstructure, size distribution, and phase transformation of the powders were characterized by scanning electron microscopy (SEM), laser scattering for particle size analysis, X-ray diffraction (XRD), and transmission electron microscopy (TEM). After cryomilling for 20 h, the average grain size of the as-milled powders approached a constant value of 30 nm by XRD measurement. The average particle size slightly increased from 17.5 to 20.3 μm during the 20-h milling. About 90vol% of the powders satisfied the requirement for thermal spraying with the particle dimension of 10-50 μm, and most of the powders exhibited spherical morphology, which were expected to have good fluidity during thermal spraying. The Cr2O3 phase formed during the cryornilling process as revealed in the XRD spectra, which was expected to enhance the thermal stability of the as-milled powders during the followed thermal spraying or other heat treatment.  相似文献   

13.
锂离子电池正极材料LiFePO4/C的制备与表征   总被引:2,自引:0,他引:2  
采用溶胶-凝胶法合成了LiFePO4/C复合材料,利用元素分析、X射线衍射(XRD)、扫描电镜(SEM)等方法对其进行了表征,将其组装成模拟电池测试了其电化学性能.结果表明:LiFePO4/C具有单一的橄榄石型晶体结构,碳粒子平均颗粒大小在1μm左右.LiFePO4/C复合材料在3.4 V处具有很好的充放电电压平台,与LiFePO4相比,具有更高的放电比容量和更好的循环性能,在60 ℃时的首次放电容量达到133 mAh/g,经20次循环后的容量保持率为93.8%.  相似文献   

14.
利用粉煤灰反应烧结合成ZrO_2-莫来石复合材料   总被引:2,自引:1,他引:1  
以粉煤灰、锆英石和氧化铝为原料,通过反应烧结法合成ZrO2-莫来石复合材料.研究了烧结温度对合成材料线收缩率、密度、吸水率、常温耐压强度和抗热震性的影响.采用XRD和SEM表征材料的相组成和显微结构.研究结果表明,在1600℃下烧结4h可以合成常温耐压强度高、烧结性和抗热震性优异的ZrO2-莫来石复合材料;合成材料中ZrO2多以粒状形式存在,平均粒径约为5~10μm,能较均匀地分布于莫来石基质中.  相似文献   

15.
A single host white emitting phosphor, CaLaGa3O7:Dy3+, was synthesized by chemical co-precipitation. Field emission scanning electron microscopy, X-ray diffraction, laser particle size analysis, and photoluminescence and cathodoluminescence spectra were used to investigate the structural and optical properties of the phosphor. The phosphor particles were composed of microspheres with a slight tendency to agglomerate, and an average diameter was of about 1.0 μm. The Dy3+ ions acted as luminescent centers, and substituted La3+ ions in the single crystal lattice of CaLaGa3O7 where they were located in Cs sites. Under excitation with ultraviolet light and a low voltage electron beam, the CaLaGa3O7:Dy3+ phosphor exhibited the characteristic emission of Dy3+ (4F9/2-6H15/2 and 4F9/2-6H13/2 transitions) with intense yellow emission at about 573 nm. The chromaticity coordinates for the phosphor were in the white region. The relevant luminescence mechanisms of the phosphor are investigated. This phosphor may be applied in both field emission displays and white light-emitting diodes.  相似文献   

16.
In this study, the fabrication of multilayer Al(Zn)–Al2O3 with different volume fractions of Al2O3 was investigated. Al and ZnO powders were milled by a planetary ball mill, after which five-layer functionally graded samples were produced through hot pressing at 580℃ and 90 MPa pressure for 30 min. Formation of reinforcing Al2O3 particles occurred in the aluminum matrix via the aluminothermic reaction. Determination of the ignition temperature of the aluminothermic reaction was accomplished using differential thermal and thermogravimetric analyses. Scanning electron microscopy, energy dispersive spectroscopy, and X-ray diffractometery analyses were utilized to characterize the specimens. The thermal analysis results showed that the ignition temperatures for the aluminothermic reaction of layers with the highest and lowest ZnO contents were 667 and 670℃, respectively. Microstructural observation and chemical analysis confirmed the fabrication of Al(Zn)–Al2O3 functionally graded materials composites with precipitation of additional Zn in the matrix. Moreover, nearly dense functionally graded samples demonstrated minimum and maximum hardness values of HV 75 and HV 130, respectively.  相似文献   

17.
Electrochemical capacitors store the capacitance through faradic reaction, which is generally named psue-docapacitance or supercapacitance. They are currently extensively studied as novel energy storage devices. Due to their superb characteristics of high power density and long cycle life compared to the conventional batteries, their high pulse-power capability is very excellent. Inter-ests in supercapacitor energy-storage systems have arisen in recent years on account of possible applications…  相似文献   

18.
《矿物冶金与材料学报》2015,22(10):1092-1100
In situ (α-Al2O3+ZrB2)/Al composites with network distribution were fabricated using low-energy ball milling and reaction hot pressing. Differential thermal analysis (DTA) was used to study the reaction mechanisms in the Al–ZrO2–B system. X-ray diffraction (XRD) and scanning electron microscopy (SEM) in conjunction with energy-dispersive X-ray spectroscopy (EDX) were used to investigate the composite phases, morphology, and microstructure of the composites. The effect of matrix network size on the microstructure and mechani-cal properties was investigated.The results show that the optimum sintering parameters to complete reactions in the Al–ZrO2–B system are 850℃ and 60 min.In situ-synthesizedα-Al2O3 and ZrB2 particles are dispersed uniformly around Al particles, forming a network micro-structure; the diameters of theα-Al2O3 and ZrB2 particles are approximately 1–3μm. When the size of Al powder increases from 60–110μm to 150–300μm, the overall surface contact between Al powders and reactants decreases, thereby increasing the local volume fraction of re-inforcements from 12% to 21%. This increase of the local volume leads to a significant increase in microhardness of thein situ (α-Al2O3–ZrB2)/Al composites from Hv 163 to Hv 251.  相似文献   

19.
We report an experimental route for synthesizing perovskite-structured strontium titanate (SrTiO3) nanocubes using an alkali hydrothermal process at low temperatures without further heating. Furthermore, we studied the influence of heating time (at 180℃) on the crystallinity, morphology, and perovskite phase formation of SrTiO3. The SrTiO3 powder, which is formed via nanocube agglomeration, transforms into cubic particles with a particle size of 120–150 nm after 6 h of hydrothermal sintering. The crystallinity and percentage of the perovskite phase in the product increased with heating time. The cubic particles contained 31.24at% anatase TiO2 that originated from the precursor. By varying the weight ratio of anatase TiO2 used to react with the strontium salt precursor, we reduced the anatase-TiO2 content to 18.8at%. However, the average particle size increased when the anatase-TiO2 content decreased.  相似文献   

20.
A Ni-B4C macroscopic diffusion welding couple and a Ni-15wt%B4C composite fabricated by spark plasma sintering (SPS) were used to understand the micro-scale diffusion bonding between metals and ceramics. In the Ni-B4C macroscopic diffusion welding couple a perfect diffusion welding joint was achieved. In the Ni-15wt%B4C sample, microstructure analyses demonstrated that loose structures occurred around the B4C particles. Energy dispersive X-ray spectroscopy analyses revealed that during the SPS process, the process of diffusion bonding between Ni and B4C particles can be divided into three stages. By employing a nano-indentation test, the room-temperature fracture toughness of the Ni matrix was found to be higher than that of the interface. The micro-diffusion bonding between Ni and B4C particles is quite different from the Ni-B4C reaction couple.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号