首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
高延性水泥基材料(engineered cementitious composites, ECC)是为克服水泥基材料的脆性、突破其应变软化属性而发展起来的新型纤维增强复合材料,该材料的广泛应用决定其暴露高温(火灾)的风险不可忽视.本文围绕ECC高温抗压和抗拉力学性能研究进行综述,深入分析了ECC高温力学性能的关键影响因素,讨论了相关研究工作中存在的若干问题,并在此基础上针对ECC材料高温力学性能的优化设计研究提出建议.  相似文献   

2.
通过对聚丙烯-玄武岩混杂纤维再生混凝土(recycled aggregate concrete,RAC)立方体试件进行高温后力学性能试验研究,分析了不同纤维掺量及不同目标温度对混杂纤维RAC抗压强度及劈裂抗拉强度的影响,还探讨了不同高温下混杂纤维RAC试件的表观形态和质量损失。结果表明:同样高温作用下,与素RAC相比,混杂纤维RAC试件的表面损伤程度有所降低,质量损失率略有增大,而且除200℃外,随着玄武岩纤维掺量的增加其质量损失率逐渐增大。混杂纤维RAC试件的抗压强度和劈裂抗拉强度随所受温度的升高先增大后减小,200℃温度下强度均略有增大。在相同温度条件下,掺入混杂纤维的RAC的抗压强度和劈裂抗拉强度均大于素RAC,其中聚丙烯和玄武岩纤维掺量均为0.1%时试件强度为同温度条件下最高。通过对试验数据的统计分析,建立了不同纤维掺量下混杂纤维RAC的相对抗压强度和相对劈裂抗拉强度随温度变化的关系式,为RAC在工程实际中的应用提供了一定的参考价值。  相似文献   

3.
混杂聚乙烯醇纤维增强水泥基复合材料力学性能   总被引:2,自引:0,他引:2  
目前配置ECC(engineered cementitious composites,ECC)的聚乙烯醇纤维(polyvinyl alcohol,PVA)主要由日本可乐丽公司生产,成本较高.国产PVA价格合理,但国产PVA-ECC的拉伸延性有限,为了进一步提高水泥基复合材料的拉伸延性,兼顾应用成本,将国产PVA纤维和日本产PVA纤维以一定的比例混合,配制混杂PVA-ECC,为实际工程结构性能提升提供更多的材料选择.首先基于微观力学模型,确定混杂PVA-ECC中PVA纤维的体积分数,对设计的5组不同配合比的混杂PVA-ECC试件进行四点弯试验、单轴拉伸试验及单轴压缩试验,确定混杂PVA-ECC的较优配合比.最后对典型配合比ECC进行性能和成本对比分析,提出了低成本、较低拉伸性能的配合比M7,中等成本、较高拉伸性能的配合比M17和高成本、高拉伸性能的配合比M21等3个具有代表性的配合比,供实际工程根据结构性能的需要进行选择.采用混杂PVA纤维配置ECC,可降低ECC的成本,使得ECC大量应用于工程实践成为可能.  相似文献   

4.
纤维纳米改性橡胶混凝土(SFNS-CRC)是一种新型环保高性能混凝土,通过对其标准立方体试件高温中力学性能试验,探究温度、钢纤维体积率和纳米二氧化硅掺量对该种新型改性橡胶混凝土抗压和劈裂抗拉强度的影响.选用橡胶体积掺量为10%,的橡胶混凝土,在此基础上考虑了4种不同钢纤维体积率(0,、0.5%,、1.0%,、1.5%,),3种不同纳米二氧化硅掺量(0、1%,、2%,)和4种不同温度(20,℃(室温)、200,℃、400,℃和600,℃).抗压和劈拉性能试验在实验室自行研制的混凝土材料高温中力学性能抗压和劈拉试验机上进行.试验分析了试件的破坏形态、高温中质量损失、试件抗压和劈裂抗拉强度的变化及破坏机理.研究结果表明:钢纤维和纳米二氧化硅对橡胶混凝土高温中力学性能改性效果较为理想,同时使橡胶混凝土高温中的破坏形态得到极大改善,试块完整性更好,趋于延性破坏;高温中SFNS-CRC抗压和劈裂抗拉强度提高显著,且后者提高更加明显;随钢纤维掺量增加,高温中试件强度逐渐提高;纳米二氧化硅最佳掺量为1%,.  相似文献   

5.
通过中心拉拔试验研究玄武岩纤维筋(BFRP筋)与混杂纤维再生混凝土高温后粘结性能。选取体积掺量均为0.15%的玄武岩和纤维素纤维混掺再生混凝土中,目标温度为20°C、200°C、400°C、600°C和800°C。试验研究结果表明:相同温度条件下,混杂纤维的掺入有效提高了粘结强度;再生混凝土与BFRP筋的粘结弹性模量随着温度升高而逐渐降低;峰值粘结强度随温度升高出现先上升后降低的趋势;未掺入混杂纤维的随温度升高峰值粘结强度逐渐降低。建立了粘结-滑移曲线且与试验结果吻合较好,可为BFRP筋与混杂纤维再生混凝土粘结性能研究提供一定的参考。  相似文献   

6.
完成了聚丙烯纤维掺量分别为0.6,1.2,1.8,2.4 kg/m3的C60高强混凝土在常温、300℃、500℃、700℃、900℃后的各项力学性能试验,对比分析了不同掺量聚丙烯纤维对C60高强混凝土高温后力学性能的影响,并通过回归分析,建立了高温后高强混凝土残余抗压强度、抗拉强度和抗折强度与温度的关系曲线和解析式。结果表明,在适宜的聚丙烯纤维掺量范围内,高强混凝土高温后的力学性能能够得到明显改善,700℃以后改善效果不明显。  相似文献   

7.
为了研究玄武岩格栅增强水泥基复合材料(ECC)反复荷载作用下的力学性能,考虑玄武岩纤维复材(BFRP)格栅层数和加卸载循环方式,对玄武岩格栅增强ECC薄板试件进行了单轴反复拉伸试验。试验结果表明:玄武岩格栅与ECC复合,充分发挥了玄武岩格栅的材料性能,进一步提高了基体ECC的延性。随着玄武岩格栅层数的增加,玄武岩格栅增强ECC的极限抗拉强度显著增大。依据试验结果建立了反复荷载下玄武岩格栅增强ECC的本构关系模型。计算结果表明:该模型可以有效地预测反复荷载下玄武岩格栅增强ECC的应力-应变关系、极限抗拉强度、极限拉伸应变和残余塑性应变。  相似文献   

8.
玄武岩纤维混凝土(basalt fiber reinforced concrete, BFRC)是一种新型建筑复合材料,相比普通混凝土具有抗拉强度高、耐久性能好等优点。为探究玄武岩纤维掺量对混凝土基本力学性能的影响,分别对8种不同体积掺量的BFRC进行了立方体抗压和劈裂抗拉试验,基于试验结果,采用指数平滑预测模型对附加纤维掺量的混凝土强度性能进行预测。试验结果表明:随着纤维掺量的增加,混凝土抗压、劈拉强度和拉压比呈先增大后减小的趋势,存在最大值;对于立方抗压强度和劈裂抗拉强度而言,其峰值强度对应的纤维掺量有所不同,玄武岩纤维的掺入对混凝土劈裂抗拉强度影响较为明显;通过采用指数平滑预测模型对纤维体积掺量大于0.4%的BFRC强度性能进行预测发现,混凝土的抗压、劈拉强度及拉压比继续呈现出下降趋势。可见,适量掺入纤维提升了混凝土的强度性能,过多掺入纤维对混凝土的力学性能造成不利影响。  相似文献   

9.
采用工程水泥基复合材料(Engineered Cementitious Composite,ECC)沿水平灰缝对砖砌墙体进行嵌缝加固,几乎不改变其外观,符合文物建筑修旧如旧原则.为研究ECC水平嵌缝加固砖砌体的剪切性能,以聚乙烯纤维(PE)、聚乙烯醇纤维(PVA)和混杂纤维(PVA与PE)等不同纤维类型、PE纤维掺量、嵌缝间距和单双面加固为变量,开展砖砌体在剪压作用下的对角剪切试验.对比分析ECC加固砖砌体墙的破坏模式、荷载-位移曲线、剪切强度和延性,探究ECC与砖砌体的协同工作性能. 试验结果表明:ECC水平嵌缝加固减缓了砖砌体内部裂缝的开展,提升了试件的抗剪承载力和破坏时的整体性,加固试件的抗剪强度最大提升了44.5%,加固面的最大抗剪刚度约为未加固面的5倍.  相似文献   

10.
完成了108个70.7mm×70.7mm×70.7mm复掺纤维活性粉末混凝土(RPC)立方体试块高温下抗压试验.考察了聚丙烯纤维(PPF)和钢纤维复掺对RPC高温爆裂的抑制效果,研究了温度和复掺纤维掺量对高温下RPC立方体抗压性能的影响.结果表明:体积掺量2%的钢纤维和0.2%的PPF复掺能有效防止RPC爆裂,高温下立方体RPC的抗压强度也相对较高.100℃时RPC的立方体抗压强度比常温低,200~500℃时立方体抗压强度相比100℃时有所升高,600~800℃时立方体抗压强度相对500℃时降低.若钢纤维掺量相同,则20~300℃时,立方体抗压强度随PPF掺量增大而降低;400~800℃时,立方体抗压强度随PPF掺量增大而提高.若PPF掺量相同,则20~100℃时,立方体抗压强度随钢纤维掺量的增大而提高;200~800℃时,立方体抗压强度随钢纤维掺量的增大而降低;100~400℃时复掺纤维RPC的立方体相对抗压强度低于普通混凝土和高强混凝土,400~800℃时复掺纤维RPC的相对抗压强度则较大.基于试验结果,拟合出了不同纤维掺量的RPC高温下立方体抗压强度随温度变化的计算公式.  相似文献   

11.
为了研究工程水泥基复合材料(ECC)在高温作用后的损伤机理及超声特性,对不同温度(20,105,250,400,600和800℃)作用后的ECC试件进行超声波和抗压强度测试.结果表明:超声波通过高温作用后ECC的波形幅值、主频幅值、能量和ECC抗压强度的变化趋势相同;不同温度作用后40~50kHz频段的能量占比均最大,约为0~300kHz总能量的15%;在20~250℃作用后声速变化不大,温度高于400℃后声速随温度升高而降低.原因是高温后自由水汽化、水化产物分解和骨料物性改变,导致孔隙蒸汽压力升高和骨料界面损伤,ECC内部裂纹产生并扩展.扫描电镜测试结果表明,PVA纤维随温度升高发生软化、熔化和汽化,ECC基体中产生空隙和孔道并与裂纹连通形成网络,有利于释放孔隙蒸汽压力,减弱ECC高温损伤.研究表明超声特性可以有效反映ECC的高温损伤演化过程.  相似文献   

12.
研究了聚丙烯纤维体积掺量为0.3%时,不同钢纤维掺量对活性粉末混凝土高温后轴心抗拉强度、抗压强度、抗折强度、拉压比、折压比的影响及其随温度的变化规律。结果表明:聚丙烯纤维能够有效抑制爆裂、改善活性粉末高温后的性能;混掺聚丙烯纤维和钢纤维能够提高高温后混杂纤维活性粉末混凝土力学性能,500℃之前损伤率较小,500℃之后损伤率较大;混掺2%钢纤维的混杂纤维活性粉末混凝土高温后的拉压比、折压比提高较多,混杂纤维可以优势互补。  相似文献   

13.
研究了聚丙烯纤维体积掺量为0.3%时,不同钢纤维掺量对活性粉末混凝土高温后轴心抗拉强度、抗压强度、抗折强度、拉压比、折压比的影响及其随温度的变化规律。结果表明:聚丙烯纤维能够有效抑制爆裂、改善活性粉末高温后的性能;混掺聚丙烯纤维和钢纤维能够提高高温后混杂纤维活性粉末混凝土力学性能,500℃之前损伤率较小,500℃之后损伤率较大;混掺2%钢纤维的混杂纤维活性粉末混凝土高温后的拉压比、折压比提高较多,混杂纤维可以优势互补。  相似文献   

14.
为了研究高温后方钢管高强混凝土短柱的受力性能,以温度及混凝土强度为变化参数,设计了15个试件进行高温后的静力加载试验,观察了高温后试件的外观变化和破坏形态,分析了其荷载—轴向位移曲线,研究了各个参数对高温后方钢管高强混凝土短柱的力学性能的影响,并探讨了引入材料强度折减系数后已有规范对构件承载力计算的可行性。研究结果表明:高温后方钢管高强混凝土轴压短柱破坏模式为剪切破坏和腰鼓破坏两种,温度低时倾向于发生剪切破坏,温度较高时易发生腰鼓破坏;温度在400℃以下时试件的承载力和轴压刚度变化不大,超过400℃时承载力和轴压刚度迅速降低,温度从常温升至200℃、400℃、600℃、800℃时,试件承载力分别为常温试件的101%、105%、76%、54%,其轴压刚度分别为常温试件的97%、96%、62%、51%;极限承载力随混凝土强度等级的提高而增大,混凝土等级从C60提高至C70及C80时,平均极限承载力分别提高7%和12%。延性系数随温度的升高经历先减小后增大的变化过程,温度为400℃时延性系为常温试件的92%,800℃时为123%,混凝土强度对试件的延性系数影响并无明显规律。引入折减系数后我国规程DBJ 13-51-2003及日本规程AIJ(1997)的计算值与试验值吻合较好。  相似文献   

15.
钢-玄武岩混杂纤维道面混凝土力学性能试验研究   总被引:1,自引:1,他引:0  
结合道面混凝土的使用特点及要求,为提高道面混凝土的基本力学性能,对钢-玄武岩混杂纤维道面混凝土(steel-basalt hybrid fibers reinforced pavement concrete,简称SBHFRPC)的工作性及基本力学性能进行了比较系统的试验研究。试验通过对比分析研究了钢纤维以0.9%、1.2%、1.5%、1.8%四种体积掺率和玄武岩纤维以0.05%、0.10%、0.15%三种体积掺率相互混杂对机场道面混凝土抗折、抗压强度性能的影响规律,同时,对钢-玄武岩混杂纤维机场道面混凝土的基本力学增强机理进行了一定的分析。试验结果表明:混杂纤维对道面混凝土有较好的力学增强性能,在钢纤维掺量为1.5%,玄武岩纤维掺量为0.10%时达到最佳。  相似文献   

16.
为探究3种因素钢纤维、聚乙烯醇(polyvinyl alcohol, PVA)纤维和矿粉对钢-PVA混杂纤维高性能混凝土(hybrid fiber high performance concrete, HFHPC)高温后残余力学性能的影响。对钢纤维、PVA纤维和矿粉3种因素各取3个水平,采用L9(33)方案进行正交设计,测试HFHPC遭受高温作用后的立方体抗压强度、劈裂抗拉强度和抗折强度,并进行极差与方差分析。结果表明:钢纤维体积分数为2.0%时可以有效提高HFHPC的各项强度。PVA纤维能够抑制混凝土爆裂,与钢纤维混杂可体现优势互补。800℃时,当钢纤维体积分数为2.0%、PVA纤维体积分数为0.3%、矿粉掺量为10%时,HFHPC的抗压强度残余率与劈拉强度残余率达到最高,分别为60.23%和74.5%。当矿粉掺量大于10%时,HFHPC抗压强度可显著提高,而劈拉强度与抗折强度略有下降。最后分别建立了HFHPC立方体抗压强度、劈裂抗拉强度和抗折强度的预测模型。  相似文献   

17.
通过试验研究了砂灰比、水灰比、纤维种类和减缩剂对高韧性纤维增强水泥基复合材料(ECC)收缩变形的影响.结果表明:随着砂灰比的增大,ECC收缩应变值逐渐减小;随着水灰比的增大,ECC收缩应变值逐渐增大;国产PVA纤维对控制ECC早期收缩变形有较明显的效果,而日本产的高弹性模量PVA纤维对控制ECC后期收缩变形效果显著;水灰比为0.40时,混杂纤维对控制ECC收缩变形的效用比单独掺入国产PVA或日本产PVA好;水灰比为0.40时,掺入减缩剂可使ECC收缩应变约减少200×10-6,可见减缩剂控制ECC收缩变形效果显著.  相似文献   

18.
采用正交试验对PVA(聚乙烯醇)纤维再生混凝土的物理力学性能进行进一步的研究,考察了水胶比、粉煤灰替代率(质量分数)、再生粗骨料替代率(质量分数)、PVA纤维掺量(体积分数)四种因素对PVA纤维再生混凝土抗压及劈拉强度的影响。试验结果表明:水胶比是影响PVA纤维再生混凝土抗压及劈拉强度的主要因素,再生粗骨料替代率为30%、50%、70%时,其抗压及劈拉强度均低于替代率为0的强度,PVA纤维掺量为0.1%时可以有效的提高抗压及劈拉强度。  相似文献   

19.
为了研究玻璃纤维网格和混杂纤维对超高性能混凝土(ultra-highperformanceconcrete,UHPC)双向板弯曲性能的影响,通过四边简支板的弯曲试验,研究了玻璃纤维网格层数、单掺钢纤维(steelfiber,SF)、钢纤维分别与聚乙烯醇纤维(polyvinyl alcohol,PVA)、玻璃纤维(glass fiber,GF)、玄武岩纤维(basalt fiber,BF)混掺对UHPC板的破坏形态、承载力和弯曲韧性的影响.结果表明,未铺设网格的UHPC板中短切纤维总体积率为1.5%时,混杂1.0%SF和0.5%PVA(1.0%SF/0.5%PVA)纤维对UHPC板增强增韧最显著,其极限承载力和挠度10 mm处的能量吸收值较掺入1.5%SF、0.5%SF/1.0%PVA、0.5%SF/1.0%GF、0.5%SF/1.0%BF的UHPC板分别提升了33.7%、53.3%、43.2%、117.0%和14.3%、81.8%、46.1%、107.5%;单掺1.5%SF的UHPC板的延性和持荷能力较混杂纤维UHPC板强.相较未铺设玻璃纤维网格试件,玻璃纤维网格能够有效抑制UHPC板...  相似文献   

20.
为了研究混杂纤维对自密实混凝土(SCC)工作性能及力学性能的影响,进行了4种纤维体积掺量(0%,0.05%,0.1%和0.15%)的纤维自密实混凝土(玄武岩纤维、聚丙烯纤维以及玄武岩-聚丙烯混杂纤维)的塌落度扩展度试验、J型环试验和28d抗压强度、劈裂抗拉强度和抗折强度试验,并通过SEM图像分析纤维自密实混凝土的微观形貌。结果表明:纤维掺量的增加导致自密实混凝土流动性能下降,但仍满足自密实混凝土工作性能的要求;混杂纤维的掺量在一定范围内,对自密实混凝土的抗压强度、劈裂抗拉强度和抗折强度均有不同程度的提高作用。可见获得纤维的合理掺量十分重要。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号