首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
以福建省天然常绿阔叶林及人工杉木林下草本层为研究对象,对其地上生物量(y)与地下生物量(x)分配关系进行研究,并对方程lg y=b+ a lg x中的生长指数(a)和生长常数(b)进行计算分析,初步揭示不同森林类型草本层植物生物量分配及其随乔木层林龄变化的基本特征,探究其是否符合等速生长规律。结果显示:①天然常绿阔叶林草本层生物量随林龄增加而下降,人工杉木林草本层生物量在成熟林时期最大,幼、中龄林次之,近熟林最小; ②天然常绿阔叶林幼龄林及成熟林草本层地上-地下生物量分配遵循等速生长规律,中龄林及近熟林生长指数a的95%置信区间上限接近理论值1,各林龄生长常数以成熟林<幼龄林<中龄林<近熟林; ③人工杉木林草本层地上-地下生物量分配均遵循等速生长规律,各林龄生长常数以幼龄林>成熟林>近熟林>中龄林。研究表明,人为干扰对草本层地上-地下生物量分配有影响,但并未破坏其等速分配生长的规律。  相似文献   

2.
为了研究夏季气温、土壤含水量等环境因素对桉树树干径向生长的影响,以海南省儋州的3年生桉树为研究对象,利用DD型树木径向变化记录仪对树干的径向日生长进行连续监测,同时记录土壤含水量、空气相对湿度、气温、大气水势、太阳辐射、饱和水汽压差等环境因子,分析桉树树干径向生长日变化特征对环境因子的响应.结果显示:桉树树干的径向生长呈明显的昼夜周期性变化规律,表现为白天收缩、夜间膨胀的波动过程,日最大值出现在07∶00左右,日最小值出现在16∶00左右.相关分析结果表明,桉树树干径向生长日变化与土壤含水量、空气相对湿度和大气水势呈正相关,与气温、太阳辐射、饱和水汽压差呈负相关,相关性具有高度统计学意义(P0.01).主成分和偏相关分析结果表明,土壤含水量是影响桉树树干径向生长日变化的最主要环境因子.  相似文献   

3.
【目的】龙门石寨熔岩台地是五大连池火山群演替顶极群落兴安落叶松天然林的主要分布地。探讨近51年(1968—2018年)龙门石寨兴安落叶松树木径向生长对气候变暖的响应特征,进而为了解气候变暖背景下五大连池火山群植被演替趋势提供科学依据。【方法】采用Mann-Kendall检验方法确定研究区近51年气温变化的趋势和可能发生气温突变的年份,运用树轮气候学方法分析1968—1981年和1982—2018年两个时间段兴安落叶松径向生长对气候变化的响应特征。【结果】五大连池近44年(1975—2018年)平均气温呈增加趋势,且1981年为研究区年均气温升高的突变点。气候变暖后兴安落叶松年轮指数和胸高断面积增量都下降,年轮指数呈上升的趋势,而胸高断面积增量处于下降趋势,但均不显著。树木径向生长对于气温升高的响应出现了“分离效应”。水热条件共同控制兴安落叶松树木生长,但气温是径向生长的主要影响因子,气候变暖显著改变了兴安落叶松径向生长与气候因子的响应模式,树木径向生长对年平均气温、年平均最低气温和寒冷指数的响应敏感性显著增强。研究期上一年11月的降水以及当年2、3月和生长季前(4—5月)的平均最低气温是决定兴安落叶松年轮宽度的主要因素。【结论】1981年后五大连池气候显著变暖,气候变暖未显著改变兴安落叶松的径向生长,升温造成的干旱胁迫可能是树木径向生长对气温变化响应的“分离效应”及气候变暖后树木径向生长与气候因子的响应显著改变的重要原因。  相似文献   

4.
为揭示樟子松人工林根内真菌群落相互关系的动态特征,以毛乌素沙地樟子松人工林为研究对象,采用生态网络分析法,分析不同林龄(中龄、近熟和成熟)及其年内生长阶段(生长季初期、旺盛期和末期)樟子松根内真菌群落共现网络动态特征及其对气候因子的响应,得到如下结果。1)在不同林龄阶段,樟子松人工林根内真菌共现网络差异不明显;在不同生长季阶段,根内真菌共现网络差异明显,生长季旺盛期,根内真菌共现网络较为复杂。2)在不同林龄和不同生长季阶段,樟子松人工林根内真菌关键类群差异明显,主要包括地孔菌属(Geopora)、棉革菌属(Tomentella)、暗球腔菌属(Phaeosphaeria)、Neocucurbitaria和被孢霉属(Mortierella)等。生长季初期和末期关键类群为外生菌根真菌和腐生真菌,旺盛期为腐生真菌和病原真菌。中龄林关键类群为腐生真菌和病原真菌,成熟林为外生菌根真菌和腐生真菌。3)外生菌根真菌网络的主要影响因子为相对湿度(P<0.05),腐生真菌和病原真菌网络的主要影响因子为平均降水量和相对湿度。因此,毛乌素沙地樟子松人工林根内真菌网络在不同生长季阶段的动态变化强于不同林龄...  相似文献   

5.
江西杉木人工林生物量分配格局及其模型构建   总被引:1,自引:0,他引:1  
在省级尺度上分析不同林龄杉木生物量数据,以探索江西省杉木人工林生物量的动态分配格局及其准确估算方法。结果表明:江西省杉木人工林生物量变化范围为55.64~165.22 t/hm2,其乔木层生物量占94.2%以上。杉木林及其乔木层生物量随林龄先增加后略微下降,而各林龄的灌木层、草本层和凋落物层生物量均没有显著差异。幼龄林、近熟林、成熟林各组分生物量大小排序均为乔木层>凋落物层>灌木层>草本层,而在中龄林和过熟林中则为乔木层>凋落物层>草本层>灌木层。幼龄林各器官生物量大小排序为树干>叶>根>枝,而其他林龄中的排序均为树干>根>枝>叶。以胸径(D)为单变量的杉木单株生物量(W)模型(W=0.266D2.069)及以胸径(D)和树高(H)为变量的模型(W=0.046 9(D2H)0.906 4)预测值小于测量值,且预测精度R2均为0.84,其精度和预测能力均低于以胸径、林龄(A)、密度(N)为自变量的生物量模型(W=11.497D1.847A0.082N-0.478)。  相似文献   

6.
杉木人工林林木养分的季节变化及养分间的相互关系   总被引:7,自引:0,他引:7  
作者于1988年在枫树山林场浮东分场林龄和立地条件不同的杉木人工林中采集针叶样品分析 N、P、K、Ca、Mg和S浓度以探寻杉木人工林的营养特性、养分的季节变化动态及不同养分之间的相互作用关系。结果表明,幼、壮、中龄林不同生育期养分的季节变化规律相似。针叶N、P、K、Mg和S浓度均为生长初期最低或较低,幼林针叶全氮及幼、壮、中龄林针叶全磷、全钾和全硫均在第一个生长高峰期(6月中旬)达到最大值,壮、中龄杉木针叶全氮及幼、壮、中龄杉木针叶全镁则在第二个生长高峰期(9月中旬)达到最大值。速生期杉木针叶全钙较低,尤其是第一个生长高峰期,初期和末期较高或最高。杉木植株氮、磷代谢之间存在明显的正相关关系。氮、硫代谢相互促进。钾、钙、镁营养之间存在显著的颉颃作用。  相似文献   

7.
【目的】森林碳储量在陆地生态系统碳库中占主体地位,通过确定人工乔木林碳密度和植被固碳增值碳储量,预测人工乔木林碳汇潜力,为改善人工乔木林的林龄和树种结构、提高森林可持续经营水平,进而为提高人工乔木林单位面积蓄积量提供科学依据,助力我国实现增汇减排的目标。【方法】比较分析我国第8次(2009—2013)和第9次(2014—2018年)森林资源清查中各优势树种人工林的面积和蓄积量数据,采用联合国政府间气候变化专门委员会(IPCC)材积源-生物量法(volume-biomass methods)分别估算并对比我国6种主要树种人工乔木林的碳储量和碳密度,分析人工乔木林碳储量和碳密度在两次森林资源清查期间增值部分的碳贡献率,综合评价我国不同林龄结构人工乔木林的固碳功能;采用拟合的单位面积蓄积-林龄的Logistic回归生长方程,结合IPCC材积源-生物量法,预测不同龄级各优势树种的蓄积量,估算我国现有人工乔木林未来15年及至2035年的碳汇增值潜力。【结果】两次森林资源清查期间,我国主要人工乔木林总碳储量增加了498.81 Tg,年均增加量99.76 Tg。第9次资源清查结束时,6个主要树种不同林龄(组)人工乔木林的碳储量由大到小依次为过熟林(439.19 Tg)>成熟林(426.43 Tg)>近熟林(359.75 Tg)>中龄林(292.34 Tg)>幼龄林(105.15 Tg),分别占人工乔木林总碳储量的27.07%、26.28%、22.17%、18.02%和6.47%;不同龄组的碳密度从小到大依次为过熟林(59.17 Mg/hm2)<幼龄林(169.12 Mg/hm2)<成熟林(178.13 Mg/hm2)<近熟林(190.38 Mg/hm2)<中龄林(348.09 Mg/hm2)。到2035年,我国主要树种人工乔木林碳储量和平均碳密度将分别达到1 716.27 Tg和36.51 Mg/hm2,与2015年相比分别增加92.92%和93.17%。【结论】两次森林资源清算结果相比,6种主要树种人工乔木林的碳储量均有显著增加,随着林分的不断成熟,碳储量呈现出线性正向增加的趋势,而碳密度受蓄积量与面积比的影响其增幅各不相同;至2035年人工乔木林碳储量约占乔木林总碳储量的20%,可以预见中国人工乔木林碳储量有很大的增加潜力。  相似文献   

8.
不同林龄马尾松林枯落物储量及其持水性能   总被引:8,自引:2,他引:6  
对3种不同林龄阶段的马尾松林下枯落物储量及其持水特性进行分析.结果表明:枯落物储量中近熟林、中龄林、幼林分别为32.20、30.59、22.27 L/hm2;同一林分不同种类枯落物最大持水量差异明显;枯落物吸水速度随浸泡时间的延长而降低,30 min内吸水速度最快,枯落物吸水速度与其浸泡时间相关性极高;在充分吸水条件下,不同林龄不同层次、不同种类枯落物蒸发量有所差异,保水周期为7~10 d;林下枯落物最大持水能力随林龄的增大而增加,幼龄林、中龄林、近熟林分别为53.28、71.91、77.49 t/hm2,分别相当于水深为5.33、7.19、7.75 mm.  相似文献   

9.
【目的】地位指数法是森林立地质量评价常用的一种方法, 优势高又是地位指数模型中重要的参数。本研究以杉木优势高生长为切入点,使用与年龄无关方法建立杉木人工林的优势高生长模型,模拟在林分年龄未知的情况下预测杉木人工林优势高。【方法】利用福建省将乐国有林场杉木人工林的65个固定样地连续观测数据,基于Richards方程、Lundqvist-Kolf方程和Hossfeld方程3个树高生长方程,使用与年龄无关的方法建立了9个优势高生长模型。模型检验使用决定系数、平均误差和均方根误差3个统计指标来确定最佳模型。【结果】构建的9个优势高生长模型都具有较好的拟合优度,其中以Hossfeld方程为基础方程,以参数a作为林分因子扩展参数推导而来的模型为最佳模型,而且模型参数年龄差Δt越小,模型预测精度越高。【结论】与年龄无关的地位指数模型能够准确地拟合和预测优势高生长。在异龄林中或林分年龄难以获得时,建议采用与年龄无关的地位指数模型来评估立地质量。  相似文献   

10.
【目的】秦岭是以太白红杉(Larix chinensis)为代表的典型温带针叶林分布区,也是受全球气候变化影响最为显著和敏感的地区之一,为了解该区树木生长对气候变化的敏感性,分析了秦岭鳌山太白红杉径向生长对气候因子的响应。【方法】基于树木年代学方法,利用鳌山高山林线太白红杉树木年轮宽度资料,建立树轮宽度年表,明确影响太白红杉径向生长的关键气候因子。【结果】太白红杉对气候变化反应较为敏感,年表包含较多的气候信息,适用于树轮气候学研究。相关分析表明,太白红杉径向生长与上年6月以及当年2月和6—7月气温呈显著正相关,与上年5月和当年1、6月降水量呈显著负相关。空间分析发现太白红杉树轮宽度年表对于评估采样点周边较大范围地区6月气温变化特征具有很好的空间代表性。【结论】一些大尺度的大气-海洋变化的耦合作用可能对秦岭地区太白红杉的径向生长产生影响。  相似文献   

11.
【目的】通过比较不同插值方法模拟黑龙江省气象因子,利用最佳插值结果,探寻落叶松样地气象因子与森林植被净初级生产力(NPP)的关系,为黑龙江省落叶松林的生产经营和管理提供科学参考。【方法】以黑龙江省2010年生长季(5—9月)气象因子(日平均气温、日降水量)及1 521块落叶松林固定样地数据为数据源,分别使用反距离加权(IDW)、普通克里金(OK)、多元线性回归(MLR)和混合插值法(包括回归反距离加权(RIDW)和回归克里金(RK))5种插值方法对生长季月均气温和月均降水量进行插值及比较,以最佳插值方法得到黑龙江省2010年生长季月均气温和月均降水量空间分布。根据东北地区树种生物量异速模型估算落叶松样地单位面积森林地上生物量(AGB)和净初级生产力,并与样地气象因子进行相关性分析。【结果】5种插值方法中RK的生长季月均气温和月均降水量均方根误差(RMSE)分别为0.420和10.110,均优于其他插值方法。生长季月均气温由南至北降低的同时落叶松NPP随之降低,月均降水量自西向东增大,落叶松NPP随之升高。生长季月均气温、月均降水与NPP的Pearson相关系数分别为0.221和0.241,二者P值都小于0.01,呈极显著相关。【结论】考虑地形因子和多元回归模型结果残差的RK方法可以更好地模拟黑龙江省生长季月均气温和月均降水量。生长季落叶松NPP在经、纬度方向上分布趋势与气温、降水量相同,且落叶松NPP与生长季月均气温和月均降水量均有一定相关性,其中与降水量相关性更为明显。  相似文献   

12.
【目的】针阔混交林以其有效改善针叶纯林树种结构简单、生态功能低效、生产力低下局面的特点而被广泛推广。杉木乳源木莲混交林(简称为“杉莲混交林”)是中国南方林区重要的混交林类型,系统分析各混交比例类型下乳源木莲生长性状、干形形质以及空间利用能力和综合表现的效应与规律,为科学构建杉莲混交林提供理论依据。【方法】以福建省沙县12年生不同混交比例杉莲混交林和纯林中的乳源木莲为研究对象,调查乳源木莲的生长形质和空间利用能力等系列性状表现,分析乳源木莲在各混交类型中生长、干形形质、空间利用能力等系列性状的差异变化;应用主成分分析法综合有显著混交比例类型效应的乳源木莲生长形质和空间利用能力表现,揭示乳源木莲生长、干形形质、空间利用能力综合表现的混交比例类型效应和变化规律,并基于总体表现进行混交比例类型的评价与优选。【结果】乳源木莲各项生长指标均有显著的混交比例效应,胸径、树高、单株材积随混交比例减少而逐渐增加;乳源木莲尖削度和胸高形数随混交比例减少而逐渐减少,枝下高则随混交比例减少而逐渐增加;乳源木莲冠高、树冠体积、树冠表面积及生长空间指数随混交比例减少而逐渐增大,但树冠圆满度则随混交比例减少而逐渐减小,乳源木莲在生长形质及空间利用能力的综合得分值呈现随混交比例减少而逐渐增大;混交比例对乳源木莲的冠幅和枝下高比例无显著影响。【结论】混交比例类型显著改变杉莲混交林中乳源木莲生长、干形形质和空间利用能力及其综合表现,合理混交比例类型可显著提高其生长、干形形质和空间利用能力,乳源木莲生长、干形形质和空间利用能力等性状有着不同的混交比例效应,开展综合评价十分必要。综上,杉莲混交林在密度为2 500株/hm2时,以2杉1莲混交模式下乳源木莲生长形质及空间利用能力表现最好。  相似文献   

13.
【目的】探究氮肥对毛竹林土壤硝化和反硝化作用的影响,并分析其与主要土壤因子的相关关系,为毛竹林的抚育管理及可持续经营提供理论依据。【方法】以不施氮肥毛竹林为对照,应用气压过程分离(BaPS)方法,分季节测定施氮肥条件下毛竹林土壤总硝化和反硝化速率。【结果】施氮肥条件下毛竹林土壤总硝化和反硝化速率从春季到冬季变化规律相似,均呈现先升高后降低趋势,施肥毛竹林土壤总硝化和反硝化速率均以7月最高,当月相比分别比未施肥毛竹林高27.50%和44.60%; 最低值分别出现在1月和10月,当月相比分别比未施肥毛竹林高45.58%和402.56%。【结论】施氮肥可以促进毛竹林土壤硝化和反硝化作用,提高土壤硝态氮和微生物生物量氮含量,氮肥和季节对总硝化和反硝化速率存在显著交互作用,土壤温度、含水率与土壤总硝化、反硝化速率均呈显著正相关。  相似文献   

14.
【目的】在林业经营中优化利用已有的生产要素(包括林地、技术、劳动力、资金),实现林业生态绩效增长。【方法】将林木“轮伐期”作为生产要素投入与林业生态绩效增长的中间变量,分析生产要素优化对林业生态绩效增长的作用机理,并以福建省沙县林业生产为例进行实证研究。【结果】人工经营林地的生态绩效与生产要素投入关系为:生产要素优化可提高林业生态绩效,如国有林场因林地经营面积大、资金成本较低且营林技术更先进,其生态绩效好于其他经营方式的林地;生态绩效与林地经营规模间存在“门槛”效应,当林地经营面积超过“门槛”规模后,林木轮伐期才可能延长并进一步提高生态绩效。不同林业经营方式其生产要素优化面临不同问题:国有林场需更多林地投入以应对用材林林地减少而年度用材林采伐量却增加的困境;村集体林场面临林地与资本短缺;经营型小农户面临技术、资本与劳动力投入的全面短缺。【结论】生态绩效增长的关键在于林地收益最大化前提下的林木轮伐期延长,而轮伐期延长可通过采用更先进生产技术(按高标准森林经营技术规程进行营造林)、投入更多资本且降低资金成本、投入更多林地等要素优化路径实现,其中林地经营面积大于“门槛”规模是轮伐期延长的必要条件。  相似文献   

15.
水热因子对塔里木河下游胡杨年轮指数和植被指数的影响   总被引:1,自引:0,他引:1  
【目的】探索塔里木河流域树木年轮与植被遥感间的关系。【方法】借助树木年轮学的方法和技术手段,利用塔里木河下游10个采样点的胡杨样芯数据和长时间序列中国植被指数(GIMMS NDVI)数据及水热因子数据,在分析该区胡杨年轮指数和植被指数变化特征基础上,重点探讨水热因子、胡杨年轮指数及归一化植被指数(NDVI)三者间的相关性。【结果】胡杨年轮指数和年际NDVI变化在1980—2001年间均呈下降趋势,区内植被在该时间段内退化较为严重。年内NDVI变化呈单峰状,5—8月为植被生长季,1—4月和9—12月为植被非生长季。【结论】该区胡杨年轮生长受5月(P<0.01, 显著负相关)地下水埋深和6月(P<0.01,显著负相关)温度影响显著,而NDVI主要与5—7月(P<0.01, 显著负相关)和10月(P<0.01, 显著负相关)的地下水埋深及7月(P<0.01, 显著负相关)温度有关,且影响NDVI和胡杨年轮指数的主要因子是水热因子中的地下水埋深因子。胡杨年轮指数与NDVI间的相关性差,未能通过0.05水平检验。  相似文献   

16.
【目的】明确原始红松林内土壤微生物群落对碳源的利用、土壤理化性质的季节变化规律及差异机制,探讨原始红松林土壤理化及生物学特征对气象因子季节动态的响应。【方法】以小兴安岭典型的原始阔叶红松林为研究对象,分别于2015年5—10月生长季内采集0~10 cm和≥10~20 cm的表层土壤样品。采用Biolog-ECO微平板检测法和土壤理化性质的常规测定方法测定红松林内土壤微生物功能多样性及土壤理化指标。【结果】①研究样地的多项土壤理化指标在月份间差异显著。②在整个生长季内平均颜色变化率(AWCD)的变化趋势基本一致,均随着培养时间的延长而逐渐升高,培养168 h以后,AWCD增加幅度逐渐减弱; AWCD值和多样性指数在月份间差异显著; 土壤微生物群落的代谢活性表现出明显的季节差异,并呈现一定的规律性,6月显著高于其他月份(P<0.05)。③氨基酸类、多聚物类、碳水化合物类碳源是红松林土壤微生物群落利用的主要优势碳源类型; 通过主成分分析(PCA)、聚类分析可将土壤微生物群落碳源代谢特征大致分为3簇,即5—6月、7月、8—10月; 土壤微生物利用碳水化合物类、氨基酸类、羧酸类碳源的变化对季节最为敏感。④通过相关性分析发现,AWCD值和多样性指数与速效磷、速效钾、含水量和有效氮之间存在显著或极显著相关性; 分类变异分析发现土壤理化性质变化是引起微生物功能多样性发生季节性变化的主要因子,其中含水量、速效磷的解释度分别为12.76%和30.71%。【结论】原始阔叶红松林土壤理化及微生物功能碳代谢特征具有显著的生长季动态变化,月降水总量变化的影响最为重要。  相似文献   

17.
寒温带4种森林类型土壤团聚体有机碳氮特征   总被引:1,自引:0,他引:1  
【目的】 大兴安岭是我国唯一的寒温带地区,森林资源丰富,但大兴安岭地区土层较薄,且存在永冻层,对于该地区土壤结构、养分循环存在巨大影响。探讨该地区土壤团聚体的结构组成和有机碳、氮的含量与分布规律,了解不同粒径团聚体对土壤有机碳、氮的固存与保护作用,为深入研究我国寒温带地区土壤结构与碳氮循环提供依据。【方法】 在黑龙江大兴安岭地区,以我国寒温带4种主要森林类型(兴安落叶松林、樟子松林、山杨林、白桦林)为研究对象,测定生长季林地0~5、≥5~10和≥10~20 cm土层粒径<0.053、≥0.053~0.250、≥0.250~0.500、≥0.500~1.000和>1.000 mm水稳性团聚体的分配比例并结合有机碳、氮含量,分析各粒径团聚体有机碳、氮对土壤总有机碳、全氮的贡献率,进行多因素方差分析。【结果】 ①樟子松林、山杨林和白桦林0~10 cm土层和兴安落叶松林0~5 cm土层以大团聚体(粒径≥0.250 mm)为主,占50%以上,随着土层的加深,大团聚体质量分数下降,各个林型生长季中期大团聚体质量分数均高于初期和末期,且阔叶林大团聚体质量分数高于针叶林。②团聚体有机碳含量与全氮含量呈现出大致相同的变化规律,4种森林类型以粒径≥0.500 mm团聚体有机碳、全氮含量较高,大致表现为随粒径的减小含量递减。阔叶林团聚体有机碳、全氮含量比针叶林的高,且阔叶林的在生长季中后期含量相对较高,而兴安落叶松林的呈波动式变化趋势,樟子松林的则以生长季前期含量较高。③4种森林类型0~10 cm土层,团聚体有机碳、全氮以粒径≥0.500 mm团聚体贡献率较高,最高达到90%;随着土层的加深,≥0.250 mm的大团聚体的贡献率下降,≥10~20 cm土层以粒径<0.250 mm的微团聚体贡献率最高。④森林类型、土层和月份对土壤团聚体组成和团聚体有机碳、全氮含量均具有显著影响,且粒径≥0.500 mm团聚体有机碳、全氮含量与对应粒径团聚体含量呈正相关,粒径>1.000 mm团聚体有机碳、全氮含量与该粒径团聚体含量呈极显著正相关。【结论】 森林类型、土层和月份的变化均对土壤团聚体组成及其结合的有机碳、全氮含量产生影响,阔叶林大团聚体含量以及团聚体结合的有机碳氮含量均高于针叶林。4种森林类型以生长季中期大团聚体含量更高,阔叶林团聚体有机碳、全氮含量在生长季中后期较高,针叶林则在生长季内呈波动式变化趋势。随着土层的加深,大团聚体含量、团聚体有机碳、全氮含量以及大团聚体贡献率均逐渐降低。本研究区粒径≥0.500~1.000 m和>1.000 mm团聚体是有机碳和全氮的主要载体。由此可见,寒温带4种森林类型团聚体组成及其结合的有机碳、全氮特征各异,在一定程度上反映了寒温带主要森林类型下的土壤结构与碳氮固存特征。  相似文献   

18.
基于Landsat数字影像的阿尔泰山乔木林空间分布   总被引:2,自引:0,他引:2  
【目的】以新疆阿勒泰林场乔木林为研究对象,通过遥感与地理信息技术量化分析森林的空间分布规律,为定量评估森林的生态功能提供数据基础和支撑。【方法】运用3S技术,基于DEM数据、Landsat数据和森林资源调查数据,定量分析乔木林与地形因子的空间关系。 【结果】地形因子与乔木林的空间分布在0.01水平上显著相关。研究区乔木林90%分布在海拔≥1 500~2 400 m,其中在海拔≥1 800~2 100 m分布频率最大,达39%; 其次是≥2 100~2 400 m,为27%; 海拔≥900~1 200 m和≥2 400~2 700区域林地乔木林分布较小。78%的乔木林分布在北坡、东北坡、西北坡,其中,在北坡的比例达到45%,在东北坡、西北坡的比例为33%。在坡度上主要集中于斜坡、陡坡、急坡,占比达到85%,其中在陡坡分布频率最大,达到37%。【结论】海拔、坡向和坡度是影响乔木林空间分布的主要生态因子。阿尔泰山乔木林适宜生长在海拔≥1 500~2 400 m,坡向为北坡、东北坡、西北坡,坡度涵盖斜坡、陡坡、急坡的区域。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号