首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
采用基于实际生产应用的涡流管模型,以空气为介质,模拟分析了不同进气温度和冷流率对涡流管制冷性能的影响,结果表明:冷流率一定时,涡流管的冷端出口温度、热端出口温度、制冷温度效应及单位制冷量均随进气温度的升高而增大,而制冷效率基本不受温度影响;在相同进气温度下,涡流管的制冷温度效应、单位制冷量及制冷效率都随冷流率的增大呈先增大后减小的趋势;存在一个最佳冷流率范围使得制冷温度效应、单位制冷量、制冷效率最大,但它们各自的最佳冷流率范围不同。  相似文献   

2.
通过涡流管内部气体的流动分析,得到了喷嘴结构对涡流管热分离性能的影响关系,基于锥形涡流管进行了对比实验,实验验证了分析结果的正确性.实验结果表明:影响涡流管热分离性能的基本参数是喷嘴流道的总截面积,而非单个流道的截面积或流道个数.保持单个流道的截面积一定,当冷气流率较小时,流道个数越多对应制冷效应越大,而冷气流率较大时,结果相反.当冷气流率较小时,增加喷嘴流道的总截面积可获得更高的制冷效应,但制冷效率变化不大.分析表明:在本实验条件下当喷嘴流道总截面积与锥形涡流管截面积之比为0.153时,可同时获得较高的制冷效应和制冷效率.  相似文献   

3.
考虑到切向入口压力与冷气流率两个特定因素对涡流管制冷性能的重要影响,通过系统的实验方法研究了涡流管制冷效应、单位制冷量和绝热效率随此二者因素的变化规律,并以实验数据为依据,给出相应的经验方程.结果表明:当冷气流率不变时,制冷效应、单位制冷量都随入口压力的增大而增大,而绝热效率几乎不受入口压力的影响;在入口压力不变的条件下,制冷效应、单位制冷量和绝热效率都随冷气流率的增大呈现先上升而后下降的趋势,在某一冷气流率下,制冷效应、单位制冷量和绝热效率最大,但是最大值所对应的冷气流率值却完全不同;对于本实验所用的涡流管,给出的经验方程能很好地与实验数据相关联  相似文献   

4.
提出了一种应用于小功率电子散热的小型涡流管,设计建立了涡流管性能试验装置系统。针对进气压力P0、冷气流率μ对其冷却性能的影响进行了试验研究。试验结果表明,在P0=0.3—0.6MPa,μ=0.27—0.72范围内,涡流管的制冷效应及制冷量随P0的增大而增大,而制冷效率随P0的增大而减小;制冷效应、制冷量和制冷效率都随μ的变化而变化,且在μ为0—1的范围内都有极大值。  相似文献   

5.
多控制特性L阀(简称多控L阀)是在常规L阀的基础上增加一插入水平段的充气管,通过调节充气管的插入深度来实现L阀对固体流率的多种调节特性曲线,从而使L阀的调节特性更灵活,范围也更宽.就多控L阀进行的试验研究和理论分析表明:通过调节充气管的插入深度并结合常规充气点可实现对固体流率的多条调节特性曲线,大大增加了L阀的调节范围.  相似文献   

6.
对正压差条件下顺重力移动床气体-颗粒流与水平埋管的传热特性进行了实验及理论研究,揭示了埋管表面附近气体颗粒局部流动及换热的特点,建立并简化求解了描述移动床气固流与埋管间传热的物理数学模型,结果表明,细颗粒气固移动床的床层颗粒质量流率是影响传热效果的主要因素,压力作用则是通过改变床层颗粒质量流率及气体渗流率和热容来影响传热的。  相似文献   

7.
基于有关文献规定避难硐室可以采用专用压风管路制冷的要求,分析了避难硐室涡流管的制冷原理,建立了涡流管模型。进行了仿真和分析,得出了涡流管不同压力下温度分布云图;并搭建了涡流管实验台,对涡流管的制冷性能进行了实验,得出了相关实验数据。最后对仿真结果和实验结果进行了对比,为进一步将涡流管用于避难硐室的制冷系统提供了依据。  相似文献   

8.
为提高小管径涡流管的制冷效率,以产生高速涡流和发生工质分离的涡流室为对象,分析了涡流室内工质分区域流动和组合涡流动的特点,并利用standard k-ε湍流模型实现了涡流室内工质的流动过程仿真.通过分析涡流室内工质速度场、温度场和压力场的变化情况,阐明了涡流室内工质分区域流动和组合涡流动的原因,以及这一流动形式与涡流管制冷性能的关系.在此基础上,讨论了涡流室结构参数对制冷性能的影响.其结果表明,为获得较低制冷温度和较高制冷效率,涡流室直径应取1.5~2倍的热端管管径,涡流室高度为1/6.67~1/5.71倍的热端管管径,同时流道喉部截面宽度应使涡流室最小进气面积为热端管横截面面积0.233倍.  相似文献   

9.
为了提高圆形换热管的换热效率,采用SST k-ω湍流模型,对内置矩形涡流发生器的圆形换热管进行了数值模拟研究,分析了涡流发生器长高比L/H和攻角β对流动和传热特性的影响。结果表明:V型排布的4个矩形涡流发生器产生了两对反向旋转的纵向涡流,增强了冷热流体的混合,改善了圆管内的场协同,提高了换热性能。随着涡流发生器长高比L/H的增加,换热管努塞尔数( Nu )、摩擦因子( f )和综合性能评价指标(PEC)均增大;但是综合性能评价指标(PEC)的增加幅度逐渐减小,当L/H = 2时,换热管具有较好的综合性能。随涡流发生器攻角β的增大,综合性能PEC先增大后减小,当攻角β = 30°时,多数工况下PEC具有最大值,换热管具有最佳综合性能。  相似文献   

10.
对负压差立管内气固两相流的气相流动特性进行了分析,并基于滑落速度与空隙率的线性关系,建立了立管内气相速度的计算模型,给出了气体流量与相关参数的关联式。分析结果表明,负压差立管内气固两相流中气体来源于出口端进入的流化床流化风和入口端下行颗粒夹带的气体。气流大小和方向的变化主要受颗粒质量流率和立管负压差的影响,存在一个气流方向改变的临界颗粒质量流率GSC。当颗粒质量流率GS〈GSC时,流态是稀密两相流态,气体上行,成分是上行的流化风;GS〉GSC时,流态是浓相输送流态,气体下行,成分是下行颗粒夹带的气体,这个气体量随颗粒质量流率的增加而增大。模型计算结果与实验数据一致。  相似文献   

11.
涡流管的流道特性及制冷能力实验   总被引:1,自引:0,他引:1       下载免费PDF全文
以常温定压下的压缩空气为介质,对不同流道数目和轨迹的涡流管喷嘴内的温度分布及能量分离特性进行了实验研究,得到涡流管内的温度分布及制冷能力曲线;实验结果表明:在常温和入口气流压力为0.7 MPa下,4流道喷嘴制冷效应最佳,6流道喷嘴的制冷效应最差,3流道、5流道喷嘴的制冷效应介于两者之间;3种型线中阿基米德螺线喷嘴的制冷效应最好。实验发现涡流管内0.7R处存在着一个冷热两股气流的分割面,界面以内是冷气流,界面以外是热气流。  相似文献   

12.
改变旋涡管切向喷进速度以对旋涡管进行管内能量分离研究.结果表明旋涡管内能量分离效果主要取决于切向喷进速度.在亚声速区,分离效果与旋涡管喷嘴出进口压力比呈线性关系,且与喷嘴进口压力无关;最大能量分离效果发生在临界压力比附近,且受喷进压力影响,能量分离过程主要发生在旋涡管的前三分之一管段。还对最大能量分离效果进行了分析.  相似文献   

13.
以压缩空气为介质,对两种四流道喷嘴涡流管内的温度分布及能量分离特性进行了实验研究,得到涡流管内的温度分布曲线;实验结果表明:随着冷气流分量的增加,冷气流的温度逐渐升高,制热效应增加,制冷效应和冷热分离效应降低,喷嘴形式对涡流管制冷效应影响很大,实验测得的温度分布趋势与理论一致.  相似文献   

14.
本文通过直接数值模拟研究了链环涡管在不可压缩黏性流中的演化过程.在初始时刻的链环涡管由两个变形的涡环组合而成,其螺旋度为依赖于涡轴参数方程的解析表达式,进而可利用该初始流场进行涡管演化研究与螺旋度分析.发现当初始链环涡管的涡量方向具有相同手性时,链环涡管和环面纽结涡管的演化具有类似的涡动力学过程;而当它们具有相反手性时,涡管间的强涡量梯度会使两涡环在短时间内产生剧烈的涡重联,从而导致涡环由快速的尺度级串过程达到类湍流状态.  相似文献   

15.
旨在推导在圆柱直管中作均匀运动的右旋单螺旋状集中涡管诱导无粘流场流函数的解析表达式,并将结果回代到涡与流函数的微分方程中,证明这一解析解的正确性.结果显示:涡管流函数是时间的周期函数,并被表征为一系列在涡核内均匀分布螺旋涡丝流函数的叠加.当螺旋涡管沿自身轴线移动一个节距,同时绕自身轴线旋转一圈时,螺旋涡管诱导的流场退化为定常场.若令圆柱直管半径趋于无穷大,则获得在无穷大域中作均匀运动的三维螺旋状圆柱集中涡管的流函数.  相似文献   

16.
针对四排等管径圆管直接空冷凝汽器冬季因换热不均易产生冻结的情况,提出了采用变管径翅片管束的思想。用计算流体力学(CFD)方法,对变管径翅片管束的流动换热特性进行数值模拟。研究发现,变管径翅片管束相比于等管径翅片管束,换热均匀性大幅提升,综合性能也有所提高;为提高该类换热器换热性能,将管束排布方式由近等边变化到近等速,凝汽器综合性能增大而换热均匀性变化不明显;在近等速排列变管径管束的翅片上加装涡发生器,综合性能进一步提高,换热均匀性对雷诺数的敏感性有所改变。  相似文献   

17.
制冷系统的蒸发温度、制冷量、输入功率、性能系数随毛细管的改变而变化,其工作特性对整个系统而言显得十分重要的。因此对毛细管的流动过程建立了质量、能量和动量守恒特性方程,以熵最大原则建立了临界流状态下毛细管出口临界状态的参数关联式,分析计算了进口压力和毛细管内径对出口临界参数的影响,并与标准试验毛细管曲线进行了对比,结果表明,该模型在一定参数范围内与实际状况吻合。  相似文献   

18.
采用经过验证的层流模型,对带纵向涡发生器的单排翅片管束的流动换热进行建模分析,就距离圆心4种距离、5种角度的纵向涡发生器对翅片管束性能的影响机理展开分析,发现涡发生器对翅片管束的作用表现在翅片上弱换热区大小的改变和沿流动方向涡量强度的改变两个方面.涡发生器能够推迟圆柱绕流的分离点进而减小管后弱换热区,同时能够利用较大涡量的主涡使局部核心区的流体混合,提高流体的温度梯度.对比结果表明,在雷诺数范围为600~2 600,对单排圆管翅片管束而言,涡发生器相对翅片管束圆管中心为130°同时离圆心相对距离为1.36时效果最好,综合性能指标提高7%~30%;对于两排翅片圆管管束,顺排和叉排都在第二排涡发生器角度为120°时效果最好,综合性能指标提高分别可达15%和28%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号