首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
在机械搅拌高压釜中测定了290.15~513.15K、0.5~4.0MPa范围内H2、N2、CO和CO2在液体石蜡中的溶解度和体积传质系数。结果表明,H2、N2、CO和CO2的平衡溶解度均随着压力的升高而增大,N2、CO和CO2的平衡溶解度随温度的升高而减小,但氢气的平衡溶解度随温度的升高而增加。回归了各种气体的溶解度系数H1与温度丁的关联式。H2、N2、CO和CO2的体积传质系数均随着压力和温度的升高而增大,温度和压力对不同气体的体积传质系数的影响各不相同,氢气的体积传质系数受温度和压力变化的影响较大,二氧化碳的次之,一氧化碳和氮气的变化较小。  相似文献   

2.
为研究不同地应力作用下的油气储层热采过程中渗透率的变化规律,利用自主研制的热流固三场耦合渗流试验系统,选用难被孔隙介质吸附的氦气作为渗流气体,并考虑氦气黏度随温度和压强的变化,消除孔隙介质对渗流气体的吸附和气体黏度变化对渗透试验的影响,开展不同初始应力条件下煤岩试件升温渗透试验。结果表明:孔隙介质渗透率随温度升高先增大后减小,呈非单调非线性变化规律,并存在与初始有效应力有关的拐点温度,这是由于在拐点温度之前,温度应力小于初始有效应力,固体骨架向外膨胀,孔隙空间增大,渗透率增大,超过拐点温度后,温度应力大于初始有效应力,固体骨架向孔隙内膨胀挤占孔隙空间,渗透率降低;渗透率变化拐点温度随初始体积应力的增大而减小,温度应力升高速率随初始体积应力增加而增大。  相似文献   

3.
为研究乌兰察布矿区褐煤的热解产气与改性特征,在高温三轴多功能试验台进行实验,对褐煤在绝氧条件下,其热解产气量和产出气体的组分进行试验分析.结果表明:乌兰察布褐煤从常温到600℃,产出的烃类气体为110~137Nm~3/t煤,其气体组分主要为CO_2,CH_4,H_2,随热解温度的增加.其气体组分的体积密度发生变化,CO_2浓度随温度增加而降低,CH_4,H_2随温度增加而增加,在600℃时其体积分数均为40%左右.100℃~350℃是褐煤的脱水温度段.350℃~600℃是褐煤提质改性温度段,该温度段褐煤挥发份快速降低,煤质由褐煤改变为无烟煤,煤的发热量快速升高.  相似文献   

4.
不同粉粒体积分率下超声速气粉流的理论研究   总被引:4,自引:4,他引:0  
根据拉伐尔喷嘴中气粉流的数学模型,并采用威布尔分布作为粒径分布,在不同粉粒体积分率下,对喷嘴中气粉流的行为作了数值计算,计算结果表明,在亚声速区中,气流参数不随粉粒体积分率的变化而变化;在超声速区中,气体速度随粉粒体积分率的减小而增大,而气体温度则随粉粒体积分率的增大而升高。  相似文献   

5.
以加压流化床为反应器,锯末为原料,通过测定生物质空气气化产物的组成及其随反应条件变化的规律,确定了生物质结构与生物质气化气组成的关系。在700~850℃的温度范围内,以50℃为增量,考察了温度对气化产品气的影响。结果表明:CO是生物质气化的主要产物,在700~850℃的范围内,CO含量迅速升高,同时H2、CH4和烃类气体(包括CH4、C2H4、C2H2、C2H6、C3H6、C3H8)的含量也有升高,CO2的含量先升高后降低。生物质加压空气气化的实验中,压力从0.5 MPa变化到1.7 MPa,随着压力升高,CO2的体积分数上升,而CO和H2的体积分数下降,CH4和烃类气体的体积分数随压力的升高有上升趋势。生物质空气-水蒸气气化的实验中,水蒸气与生物质质量比mS/mB从1.1变化到2.6,随着mS/mB的升高,CO2,H2的体积分数均有所上升。反应结果表明,升高温度有助于生物质转化为气体;而压力越高越有利于CH4等烃类气体的生成,且随着压力的升高,反应器的处理量增大,反应程度加深;水蒸气的加入,减少了空气的消耗量,并生成了更多的H2及碳氢化合物,改善了产品气的质量。  相似文献   

6.
为研究超临界CO_2置换CH_4过程中温度对置换效果的影响,以屯留煤样为研究对象,借助ISO-300型等温吸附仪对煤样进行了不同温度(35、45、55℃)、相同注入压力(12.7 MPa)条件下的CO_2置换解吸CH_4试验。研究结果表明:置换解吸过程中,超临界CO_2吸附相体积分数随着温度升高而增加,随压力降低而增大,CH_4吸附相体积分数呈相反变化趋势;超临界状态下,试验直接测得的气体吸附量为Gibbs吸附量,气体真实吸附量与压力之间符合Langmuir吸附曲线,且与Gibbs吸附量的差值随压力的升高而增大;试验压降范围内,温度为35℃条件时,CH_4气体单位压降解吸率最高,显示出温度接近临界温度时,超临界CO_2置换效果最佳。  相似文献   

7.
在较低温度条件下,研究了以LaF3(掺杂)单晶或多晶为固体电解质,Sn,SnF2为参比电极,铂网为工作电极,构成的Sn,SnF2|LaF3(掺杂)|Pt(Ni)气体传感器·用该气体传感器分别测量了CO,CO2二种气体在体积分数5%~30%(以Ar为稀释气体)和温度293 15~343 15K条件下的EMF同CO,CO2气体体积分数、温度的关系,以及电池EMF达到平衡所需要的响应时间·由实验结果得出二种气体都表现出相似的规律性,即当温度一定,体积分数增加时,EMF随之增加;反之,当体积分数一定,而温度升高时,EMF随之增大;同一气体在相同的外部条件(体积分数、温度)下,单晶要比多晶的EMF高·二...  相似文献   

8.
高温高压条件下甲烷和二氧化碳溶解度试验   总被引:2,自引:1,他引:1  
根据不同温度和压力条件下测得的甲烷和二氧化碳两种气体在碳酸氢钠型水中的溶解度数据,对两种气体的溶解度与温度、压力及地层水矿化度之间的关系进行研究。结果表明:在地层水中的溶解机制不同,导致两种气体的溶解度值随温度、压力条件的变化具有不同的演变特征;综合前人低温(小于90℃)测试的溶解度数据,可将甲烷溶解度与温度之间的演变关系划分为缓慢递减(0~80℃)、快速递增(80~150℃)和缓慢递增(大于150℃)3个阶段;二氧化碳溶解度随温度的升高而逐渐降低,随压力升高而逐渐增大,其溶解与析离能力受压力影响更为明显;实际地层中,两种气体间溶解度的差异演变影响了天然气的空间分布。  相似文献   

9.
大气压下介质阻挡放电的发射光谱   总被引:1,自引:0,他引:1  
为了研究大气压下气体介质阻挡放电的微观机理,利用Maya2000-pro光谱仪采集了气体介质阻挡放电的发射光谱,分析了介质阻挡放电型低温等离子体反应器的放电参数、气体体积流量和气体组分对发射光谱强度的作用规律,并依据气体放电发射光谱研究了放电空间的活性物质和氮气氩气混合气的放电机理.结果表明:大气压下氮气放电会产生第2正带系的跃迁辐射光谱;氮气放电的特征谱线强度随激励电压峰峰值与放电频率的升高而增大;氮气放电的激发态物质种类不随放电参数的改变而改变;在放电功率不变的情况下,特征谱线强度随气体体积流量变化不明显;氮气氩气混合气放电时,观察到明显的潘宁效应,且气体放电的击穿电压峰峰值随混合气中氩气体积分数的升高而下降.  相似文献   

10.
湖相碳酸盐岩有机质热演化产物及其碳同位素组成特征   总被引:4,自引:0,他引:4  
通过泌阳凹陷第三系核桃园组核三段湖相碳酸盐岩的热模拟实验,对有机质演化特征、释放气体组分及含碳气体碳同位素组成特征获得了以下认识:(1)释放气体主要以二氧化碳和烷烃类气为主,含有少量烯烃气体,在300~400℃时达到气体释放峰,随温度的升高,C4~C5较重烷烃气含量增加。二氧化碳随温度的升高释放量增大,主要为碳酸盐分解贡献;(2)含碳气体碳同位素随温度的升高增重,在气体释放峰温度段350℃左右时发生明显“转折”,碳同位素组成明显变重,结果造成在不同的热演化阶段碳同位素值有较大范围的变化。  相似文献   

11.
在小型流化床实验装置(φ50 mm、高1.6 m)上,考察了温度对沛城煤矿天然焦蒸汽气化产气量、碳转化率、煤气热值和煤气组分的影响,并与ASPEN PLUS模拟结果进行了对比.实验结果表明:反应温度是影响气化反应的主要因素,温度升高,煤气组分中H2和CO2含量下降,CO含量增加;当气化反应温度从850 ℃提高到1 000 ℃,碳转化率从10.25%提高到47.76%,产气量增加了4.3倍;H2和CO2的含量由63.0%和25.0%减少到59.8%和20.2%,CO含量由9.6%增加到18.5%;煤气热值从8.87 MJ/m3增加到了9.33 MJ/m3.应用ASPEN PLUS软件模拟天然焦-蒸汽气化反应过程,同时考虑碳转化率,其模拟结果与实验数据接近,误差在可接受范围内,因此ASPEN PLUS模拟对系统设计与优化具有参考意义.  相似文献   

12.
基于单液滴蒸发可视化试验,应用ANSYS FLUENT计算流体力学模拟软件,建立纳米燃油单液滴蒸发模型,探究纳米粒子质量浓度和粒径对燃油液滴蒸发过程中温度和燃油蒸气质量浓度的影响. 结果表明,纳米燃油液滴中的纳米粒子质量浓度越高、粒径越小,燃油液滴的蒸发平衡温度越高,相同时间内的燃油蒸气气相体积分数越高. 在环境温度573 K下,纳米燃油液滴从外界环境吸收热量使自身温度不断升高,在计算域内沿液滴表面向外延伸形成质量浓度边界层和温度边界层,促进液相向气相的转化.在蒸发初始阶段,蒸发速率较低,燃油蒸气气相体积分数较小;随着蒸发过程持续进行,由于纳米粒子增强传热传质的作用,液相组分蒸发汽化加快,液滴蒸发速率加快.  相似文献   

13.
张雁 《科技信息》2012,(11):143-144
电气传动系统中广泛采用可编程序控制器,使得传动系统的性能发生了质的变化。本文结合PLC和交流变频调速技术详细介绍了其在桥式起重机上的应用,以及PLC控制的桥式起重机变频调速系统的硬件构成和系统软件的实现。对于相似情况的控制系统,可提供一定的借鉴和参考。  相似文献   

14.
在常温常压无催化剂条件下,对介质阻挡放电甲烷与氧气的合成进行了研究.试验了原料气体总流量、氧的体积分数和激励电压等参数对甲烷转化率、甲醇及C2H4收率的影响,并研究了不同氧的体积分数下甲烷转化率和消耗功率的关系.甲烷和氧气的总流量为1 000 mL/min时,CH4转化率保持在70%以上,最高达到81.1%;氧气的加入提高了甲醇的收率,当氧的体积分数为18.26%时甲醇收率达到12.33%;激励电压在1 850~1 900 V时,CH4转化率、甲醇和C2H4的收率均出现了最大值;随着消耗功率的减少,CH4转化率也随之降低.  相似文献   

15.
针对我国燃煤电厂燃气轮机叶片保护及环境排放标准方面存在的问题,针对浓度换算进行了分析,得到了换算系数,提出了高温煤气净化要求,认为浓度换算系数与高温气体的组成成分、炉型、煤炭颗粒的尺寸等很多因素有关,依据环保与燃气轮机叶片保护标准,提出了高温煤气净化的要求。  相似文献   

16.
高炉喷吹焦炉煤气风口回旋区的数学模拟   总被引:1,自引:0,他引:1  
基于质量平衡和热量平衡理论,建立了高炉喷吹焦炉煤气风口回旋区数学模型,系统研究了焦炉煤气喷吹量对回旋区焦炭质量流量、理论燃烧温度、炉腹煤气量、炉腹煤气组成和回旋区形状的影响.研究表明:在维持高炉现有的基准操作不变的条件下,随着焦炉煤气喷吹量的增加,理论燃烧温度呈降低的趋势,而炉腹煤气量呈增加的趋势;为了维持理论燃烧温度和炉腹煤气量与基准操作一致,可通过降低风量和提高富氧率进行热补偿.热补偿后,随着焦炉煤气喷吹量的增加,焦炭质量流量呈上升趋势,炉腹煤气中还原气体积呈增加趋势,回旋区体积呈缩小趋势.每增加1 m3/s的焦炉煤气喷吹量,焦炭质量流量上升1.74%,炉腹煤气中还原气体积增加2.04%,...  相似文献   

17.
为了有效地保护提升机闸瓦的制动性能、提高其工作可靠性和使用寿命,建立了提升机闸瓦在制动过程中的温度监测系统,该系统由检测系统及报警器、通讯线路、上位机等组成,能对提升机闸瓦温度进行在线测量和实时监控,具有能耗低、体积小、可靠性和稳定性好,信息处理能力强等特点,该系统为工作人员提供了有效数据参考,可以根据监测结果及时进行相关参数的修正,在保证闸瓦性能的前提下提高了制动系统的安全可靠性。  相似文献   

18.
考察了Ni--Yb/γ--Al2O3(Ni 16%,Yb 5%,质量分数)催化剂,入口气中添加不同组分(CO2、H2和CH4)对柴油低/高温水蒸气重整过程中转化率及重整率的影响,以及添加CO2入口气对质子交换膜燃料电池柴油水蒸气重整制氢流程中后续的CO水气变换和深度去除CO过程的影响.结果表明:入口气中添加CO2或H2进一步提高了柴油在低温(400~500℃)水蒸气重整反应中的转化率(95%),能够为后续的高温(550~750℃)水蒸气重整过程提供CH4代替柴油作为重整原料,从而显著抑制了积碳.入口气中添加H2对高温水蒸气重整有抑制作用,添加CH4不利于提高柴油转化率.入口气中添加CO2时,气碳摩尔比约为0.54时柴油转化率最佳,但重整产物中CO含量会增加,因而后续CO水汽变换过程的空速需降低以便保证CO去除率,添加CO2对最后深度去除CO过程(两段选择甲烷化法)无明显影响.  相似文献   

19.
研究高灰熔点煤气化特性,以水煤浆为气化原料,在沉降炉内进行了我国典型高灰熔点煤老矿中煤气化反应的实验研究.考察了气化温度和O/C摩尔比对合成气组分、碳转化率和冷煤气效率的影响.结果表明,在相同O/C摩尔比条件下,有效合成气体积分数、碳转化率及冷煤气效率随气化温度的升高而升高.在气化温度相同的条件下,随着O/C摩尔比的增加,CO2的体积分数和碳转化率随之增大,而冷煤气效率呈现出先增大后减小的趋势.在实验条件下,老矿中煤的最佳O/C摩尔比为0.90~1.05.  相似文献   

20.
在半连续实验装置上,以水为溶剂对大雁褐煤进行了超临界萃取实验。考察了压力、终温对萃取过程产率及产品组成的影响。结果表明,用水萃取褐煤在合适条件下,可得到高的转化率及萃取物产率;萃取压力增加,转化率和萃取物产率增加;萃取终温增加,转化率增加,但增加量主要为气体和轻油组分。在超临界条件下,萃取物主要馏分为予沥青烯。萃取过程中气体产率约为20%,其主要组分为CO2;经萃取后的褐煤(约占原煤50%),具有比原煤高的碳含量,低挥发分及氧含量,几乎不含水,可作为气化或燃烧的原料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号