首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
LiCoO2电极中锂离子的扩散性能   总被引:1,自引:1,他引:1  
为使锂离子电池在较高的充、放电倍率下满足动力型电源的需要,对LiCoO2中锂离子的扩散性能进行了理论推导及试验测定。以球状电极模型对LiCoO2电极进行了处理,在简化的假设条件下,推导出LiCoO2电极的扩散电流表达式,并可求得锂离子在LiCoO2电极中的固相扩散系数DLi 。研究结果表明:I对t-1/2在10~150s表现出很好的线性关系,与理论分析结果相符合;不同晶粒大小的LiCoO2样品扩散系数有很大差别,相差1个数量级以上;锂离子扩散动力学特征是由LiCoO2的晶粒尺寸决定的,与其粒径分布、比表面积及表面形貌等参数基本无关。  相似文献   

2.
中间相炭微球的粒径对其结构和性能的影响   总被引:1,自引:1,他引:1  
采用X射线衍射、粒径分析、扫描电子显微镜、BET比表面积分析及电化学方法研究了粒径对中间相炭微球结构和性能的影响.研究结果表明:随着粒径的增加,中间相炭微球的堆积密度增大,比表面积减小;中间相炭微球电极的充电容量和不可逆容量减小,可逆容量与首次充放电效率增加;以中间相炭微球为负极制成063448型锂离子电池的放电容量随着中间相炭微球平均粒径的增大而增加,不可逆容量减少;以平均粒径为19.09μm的中间相炭微球为负极制成的电池放电容量为838 mA·h,首次充放电效率为87.29%,循环100次后的容量保持率为92.4%.  相似文献   

3.
采用固相焙烧法制备正极材料钴酸锂LiCoO 2 ,并采用异丙醇铝(AIP)对其进行表面包覆,通过XRD、SEM、EDS mapping和电池充放电测试研究了AIP包覆量对材料结构和电化学性能的影响.电化学性能测试表明,AIP包覆可有效改善材料的循环性能,提高材料的放电比容量、库仑效率和倍率性能.相比于未包覆的LiCoO 2 样品,包覆量为0.1%的LiCoO 2 样品,具有最优异的电化学性能,在0.2C下的首次放电比容量提升至176.8 mAh/g,库仑效率高达97.2%;在1.0C下经50次循环后容量保持率为96.2%.  相似文献   

4.
为获得高电压下高容量的LiCoO2正极材料,采用Li2O-AlO-SiO2锂快离子导体对LiCoO2进行了表面包覆研究,结果显示,Li2O-AlO-SiO2能均匀分布在LiCoO2颗粒表面,包覆后材料的循环性能、倍率性能及安全性能均有很大提高;3.0~4.35 V、500周循环后Li2O-AlO-SiO2包覆样品容量保持率为81.2%,未包覆的LiCoO2450周循环后容量保持率为64.6%。Li2O-AlO-SiO2还可以提高材料的导电性,包覆后的材料5 C倍率放电容量保持率高达84.8%,未包覆的材料仅为71.9%。包覆后的LiCoO2正极材料的安全性能也都有明显改善。  相似文献   

5.
LiNixMn2-xO4对锂离子电池材料LiCoO2的表面改性研究   总被引:1,自引:0,他引:1  
在锂离子电池正极材料LiCoO2表面上修饰LiNixMn2-xO4来改善LiCoO2在循环过程中的容量衰减问题.对所得产物进行了XRD、SEM表征,并进行了充放电容量测试和交流阻抗测试.通过XRD和SEM,发现LiNixMn2-xO4修饰没有改变材料的晶体结构.在电化学性能测试中,由于包覆LiNixMn2-xO4可以减少材料与电解液的直接接触,最大程度地减缓电极材料在电化学循环时结构遭到破坏,在修饰量较小(3 5%)时,该改性方法改善了LiCoO2电极的循环性能,69次循环后放电比容量没有衰减,且大大地提高了平台效率.  相似文献   

6.
采用回收的含有少量Co3O4的LiCoO2为原料, 加入Li2CO3调整Li与Co的物质的量比, 高温合成正极材料LiCoO2, 运用扫描电镜和X射线衍射仪对合成的LiCoO2进行微观形貌与晶相结构的研究. 研究结果表明 合成时间对晶体结构和电化学性能有较大的影响, 合成时间越长, LiCoO2的结构越完整;将LiCoO2样品组装成电池进行电化学检测, 烧结时间为12 h的样品首次充、放电比容量分别为161.16和150.67 mA·h/g, 经30次循环之后, 放电比容量仍有141.19 mA·h/g, 表现出良好的电化学性能.  相似文献   

7.
用LiNixMn2-xO4修饰锂离子电池正极材料LiCoO2,在850℃分别进行2 h、4 h、7 h和10 h的烧结处理,对所得产物进行了X射线衍射测试,并进行充放电容量测试和平台效率的评价,在包覆量不同的情况下研究了反应时间对LiCoO2循环稳定性和平台效率的影响.对包覆后LiCoO2样品,在电化学性能测试中,3.5%包覆量烧结时间为7 h的样品表现出最好的电化学性能,其初始容量为139.3 mAh/g,120次循环后容量139.5 mAh/g,保持率为100%;而在包覆量为10%时,放电比容量和平台效率相对较低.  相似文献   

8.
失效锂离子电池正极材料的再生及电化学性能   总被引:1,自引:0,他引:1  
以废旧锂离子电池正极材料钴酸锂为原料,将锂与钴元素的比例进行适当调整后,采用高温固相合成制备出LiCoO2材料,并利用XRD、SEM、循环伏安等手段对不同煅烧温度下合成LiCoO2材料的晶相结构、表面形貌及电化学性能进行测试表征.结果表明,经850℃煅烧12h后的LiCoO2材料的性能较好,首次充电容量达143mA.h/g,放电比容量达126mA.h/g,循环30周之后仍保持92%的放电比容量,再生后的LiCoO2材料表现出良好的电化学性能.  相似文献   

9.
LiNi0.5Co0.5O2的制备及其电化学性能   总被引:2,自引:2,他引:2  
分别以碳酸盐和氢氧化物为原料,合成了LiNi0.5Co0.5O2.研究结果表明:用氢氧化物为原料,在氧气气氛中,适当提高合成温度和延长反应时间均有利于LiNi0.5Co0.5O2晶格结构的完整;在740 ℃和氧气气氛下,以氢氧化物为原料反应15 h可以合成结构理想的LiNi0.5Co0.5O2;LiNi0.5Co0.5O-2的初始放电容量与LiCoO2的初始放电容量相当,达到141.3 mA·h/g,以LiNi0.5Co0.5O2为正极的电极系统具有稳定的电压输出和良好的循环性能,经200次循环后放电容量保持率为82%,可作为LiCoO2的廉价替代物.  相似文献   

10.
采用流变相法成功合成了尖晶石Li2ZnTi3O8.X射线衍射(XRD) 分析结果表明所合成的尖晶石颗粒结晶良好.扫描电子显微镜(SEM)测试结果表明,所得Li2ZnTi3O8粒径较小,分散较均匀.将所合成的样品作为锂离子电池电极材料,采用充放电测试和循环伏安测试研究了其电化学性能.电化学性能测试结果表明,该材料的放电比容量和循环性能都较好,在0.05~3.0 V 电压下,以100 mA/g进行充放电,首次放电比容量为234.6 mAh/g,100次循环后放电比容量仍保持在208.5 mAh/g.  相似文献   

11.
固相合成条件对LiCoO2结构与形貌的影响   总被引:8,自引:3,他引:8  
研究了热处理制度、气氛以及原料等合成条件对LiCoO2结构形貌的影响.研究结果表明:高温时LiCoO2的生长呈现各向异性并有层状结构外露,易出现烧结、晶粒长大的现象;提高氧分压有利于减小LiCoO2晶粒及颗粒粒径,还可抑制颗粒之间的团聚.提出了以两段连续烧成法合成LiCoO2的工艺,简化了合成工艺,解决了低温下反应速度慢,高温下易烧结而难控制粒径的问题.  相似文献   

12.
TiO_2 has been widely studied as an important electrode material for electrochemical energy storage.Understanding its relationship between textural properties and electrochemical characteristics is essential to boosting its practical performances. Herein, Aeroxide P25 TiO_2 nanoparticles annealing at different temperatures(400–600 °C) were investigated as an anode material of lithium ion battery. Their evolution in crystal phase and microstructural characteristics were characterized by XRD and BET surface analysis, and their lithium storage properties in half-cells were evaluated by various electrochemical analyses, including cyclic voltammetry, cycling testing, and electrochemical impedance spectroscopy. It was found that the lithium storage properties were critically dependent on the size of TiO_2 anode materials. Pristine P25 initially exhibited the highest initial discharge specific capacity due to its smallest particle size; however, rapid capacity loss occurred during extended cycling. The annealing process was found to effectively enhance the cycling stability of TiO_2 although possessing a large particle size and smaller surface area. Typically, P400 showed the best performances in cycling stability, capacity retention ratio, and rate capability, which is mainly attributed to the synergistic effect of high crystallinity, reasonable particle size, and less internal resistance. This study provides an instance of optimizing the textural properties of metal oxides for advanced LIB anode material applications.  相似文献   

13.
采用共同沉淀和溶液浸渍相结合的方法合成了锂离子二次电池正极材料Li1+xCo0.2Ni0.8O2(0≤x≤0.10)。用粉末X射线衍射(XRD)、扫描电子显微镜(SEM)、电感耦合等离子体-原子发射光谱(ICP-AES)、电化学等方法对生成物进行了元素组成、形貌、物相与结构、充放电循环等分析。分析结果表明所得到的生成物为球形颗粒,粒径大小均匀,其结构为αNaFeO2型的层状结构, 生成物中无杂质相, 生成物的首次充放电效率高、比容量高、循环性能好。在2.00mA/cm2电流密度下,首次放电容量可达183mAh/g, 50次循环的保持率为3.4%。  相似文献   

14.
Carbon-coated LiFePO4 hollow nanofibers as cathode materials for Li-ion batteries were obtained by coaxial electrospinning. X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Brunauer–Emmett–Teller specific surface area analysis, galvanostatic charge–discharge, and electrochemical impedance spectroscopy (EIS) were employed to investigate the crystalline structure, morphology, and electrochemical performance of the as-prepared hollow nanofibers. The results indicate that the carbon-coated LiFePO4 hollow nanofibers have good long-term cycling performance and good rate capability:at a current density of 0.2C (1.0C=170 mA·g?1) in the voltage range of 2.5–4.2 V, the cathode materials achieve an initial discharge specific capacity of 153.16 mAh·g?1 with a first charge–discharge coulombic efficiency of more than 97%, as well as a high capacity retention of 99%after 10 cycles;moreover, the materi-als can retain a specific capacity of 135.68 mAh·g?1, even at 2C.  相似文献   

15.
采用容量间歇滴定技术在充放电仪上测定了不同电压条件下嵌入型锂离子电池正极材料LiCoO2中Li^+的固相扩散系数.研究结果表明:在3.9~4.3 V电压范围内,LiCoO2中Li^+的固相扩散系数的数量级为10^-13~10^-12cm^2/s,且在电压为3.95 V时达到最小,在电压为4.15 V时达到最大.整个充电过程中,当电压由3.95 V上升至4.15 V时,LiCoO2中Li^+的固相扩散系数增大;当电压由4.15 V上升至4.20 V时,LiCoO2中Li^+的固相扩散系数减小;当电压由4.2 V继续上升至4.3 V时,LiCoO2中Li^+的固相扩散系数同样经历了先增大后减小的过程.  相似文献   

16.
水泥颗粒粒度分布、比表面积及圆形度都是水泥加工工艺过程中的重要参数。为了实现对上述技术指标的实时监测,基于图像法研制了一套在线测量系统,并在水泥厂进行了在线测量,获得了水泥颗粒粒度分布等参数的测量结果。将系统测得的粒度分布和比表面积分别与激光粒度仪和勃氏比表面积测定仪的测量值进行对比,结果基本相符。此外,针对图像法测量下限的问题,利用Rosin-Rammler分布函数对原始测量结果进行了拟合修正,拓展了图像法的测量下限,使测量结果更符合实际情况,从而为工业生产提供实时的数据参考。  相似文献   

17.
采用液相氧化还原法合成了球形二氧化锰和无规则形状的二氧化锰,以此为原料,合成了球形锰酸锂和无规则形状的锰酸锂,比较了球形锰酸锂与无规则形状锰酸锂的物理化学性能及电化学性能的差异,结果表明:球形锰酸锂粒度分布范围窄,比表面积小,充放电循环特性在常温下十分稳定,在高温下也得到较大的改善。  相似文献   

18.
采用液相氧化还原法合成了球形二氧化锰和无规则形状的二氧化锰,以此为原料,合成了球形锰酸锂和无规则形状的锰酸锂,比较了球形锰酸锂与无规则形状锰酸锂的物理化学性能及电化学性能的差异,结果表明:球形锰酸锂粒度分布范围窄,比表面积小,充放电循环特性在常温下十分稳定,在高温下也得到较大的改善。  相似文献   

19.
在高温下合成了球型的锂离子二次电池正极材料镍锰酸锂(LiNixMn1-xO2,0相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号