首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Fasciclin family proteins have been identified as cell adhesion molecules in various organisms. In this study, a novel Magnaporthe oryzae fasciclin-like protein encoding gene, named MoFLP1, was isolated from a subtractive suppressive cDNA library and functionally analyzed. Sequence analysis showed that the MoFLP1 gene contains an open reading frame (ORF) of 1050 nucleotides encoding 349 amino acids with a calculated molecular weight of 35.85 kDa and a pI of 7.76. The deduced MoFLP1 protein contains a 17-amino acid secretion signal sequence and an 18-amino acid sequence with the characteristics of a glycosylphosphotidylinositol (GPI) anchor additional signal at its N- and C-terminuses, respectively. Potential N-glycosylation sites and domains involving cell adhesion were also identified in MoFLP1. Sequence analysis and subcellular localization by the expression of MoFLP1-GFP fusion construct in M. oryzae indicated that the MoFLP1 protein is probably localized on the vacuole membrane. Two MoFLP1 null mutants generated by targeted gene disruption exhibited marked reduction of conidiation, conidial adhesion, appressorium turgor, and pathogenicity. Our results indicate that fasciclin proteins play important roles in fungal development and pathogenicity in M. oryzae.  相似文献   

2.
Magnaporthe oryzae has been used as a primary model organism for investigating fungus-plant interaction. Many researches focused on molecular mechanisms of appressorium formation to restrain this fungal pathogen. Autophagy is a very high conserved process in eukaryotic cells. Recently, autophagy has been considered as a key process in development and differentiation in M. oryzae. In this report, we present and discuss the current state of our knowledge on gene expression in appressorium formation and the progress in autophagy of rice blast fungi.  相似文献   

3.
Agrobacterium tumefaciens-mediated transformation (ATMT) system was assessed for conducting insertional mutagenesis in Penicillium digitatum, a major fungal pathogen infecting post-harvest citrus fruits. A transformation efficiency of up to 60 transformants per 106 conidia was achieved by this system. The integration of the hph gene into the fungal genome was verified by polymerase chain reaction (PCR) amplification and sequencing. These transformants tested were also shown to be mitotically stable. Southern blot analysis of 14 randomly selected transformants showed that the hph gene was randomly integrated as single copy into the fungal genome of P. digitatum. Thus, we conclude that ATMT of P. digitatum could be used as an alternatively practical genetic tool for conducting insertional mutagenesis in P. digitatum to study functional genomics.  相似文献   

4.
Flavonoids from legume root secretion may probably act as signal molecules for expression of Rhizobial “nod” nodulation genes and AM fungal symbiotic gene. Leaf mustard is a non-mycorrhizal plant; it does not contain flavonoids and other signal molecules. AM fungi could not infect the roots of leaf mustard and form a symbiont in nature,when it was treated with flavonoids (apigenin or daidzein).The results of trypan blue staining showed that two kinds of AM fungi (G intraradices and G mosseae) successfully infected the roots of non-mycorrhizal plant leaf mustard. AM fungi grew towards and colonized the roots of leaf mustard,producing young spores and completing the course of life.AM fungi are the only one kind of fungi with ALP activity.The result of ALP staining has also proved that AM fungi infected successfully the roots of leaf mustard. AM fungi (G intraradices and G mosseae) that existed in the roots of non-mycorrhizal plant leaf mustard were probed by nested PCR and special molecular probes. The above-mentioned proof chains have fully proved that flavonoids induced AM fungi (G intraradices and G mosseae) to infect non-mycorrhizal plant and establish symbiotic relationship.  相似文献   

5.
Soil microbes contribute to native plant species successful resistance against invasive plant.Three native tree species,Heteropanax fragrans (HF),Cinnamomum burmanii (CB),and Macaranga tanarius (MT) were effective in controlling the notorious invasive vine Mikania micrantha (MM).Biomass production and allocation patterns (shoot/root biomass ratio (shoot/root)) are important indicators of MM climbing coverage and competitive light-capturing capacity.An investigation was conducted to test the role of soil microbes associated with the three native tree species to inhibit MM biomass production and shift MM shoot/root.Rhizosphere soils originating from preculture HF,CB,MT,and MM plots were collected separately for use as inocula.The inocula were mixed with sterilized river sand at a 1:9 (w/w) ratio to grow MM.The fungicide carbendazim (methyl benzimidazol-2-ylcarbamate) was applied to half the treatments to kill pathogenic soil fungi.Two nutrient levels were established based on the natural soil nutrient concentration from a field stand invaded by MM.MM were grown from seeds in a glasshouse,harvested 15 weeks after sowing,and separated into shoot and root portions.Results showed that under interaction of soil origin and nutrient levels,MM biomass production was unchanged,but biomass allocation patterns were significantly different.MM biomass production grown in the three native tree soils under two nutrient levels was similar or higher than MM biomass production in MM conspecific soil,indicating the absence of species-specific pathogens that inhibited MM biomass production in native tree soils.However,in both conspecific and tree soils,MM biomass production was significantly reduced in the presence of pathogenic soil fungi,i.e.MM experienced significant fungal inhibition,demonstrating the pathogenic soil fungi promoted native tree resistence to MM.MM exhibited decreased shoot biomass allocation when cultivated in native tree soil relative to MM conspecific soil under field stand nutrient level conditions.Reduced resource allocation to shoot biomass could result in diminished capacity to climb,cover,and subsequent smother to native trees,and reduced surface area exposed to available light.Following fungicide application,significant biomass allocation differences disappeared,suggesting the native tree soil fungi were responsible for decreasing MM shoot biomass.The overall results indicated tree soil fungi serve an integral role in controlling invasive MM through fungal inhibition on MM biomass production,and shifts in MM biomass allocation patterns.  相似文献   

6.
Appressorium formation is an important event in establishing a successful interaction between the rice blast fungus, Magnaporthe oryzae, and its host plant, rice. An understanding of molecular events occurring in appressorium differentiation will give new strategies to control rice blast. A quick and reliable method to extract total RNA from appressorium is essential for studying gene expression during appressorium formation and its mechanism. We found that duplicate film is an efficient substratum for appressorium formation, even when inoculated with high density conidia. When inoculated with conidia at 1 × 106 ml^-1, the percentages of conidium germination and appressorium formation were (97.98±0.67)% and (97.88±0.45)%, respectively. We applied Trizol before appressorium collection for total RNA isolation, and as much as 113.6 lag total RNA was isolated from the mature appressoria at 24 h after inoculation. Functional analysis of two genes, MNH6 and MgATG1, isolated from the cDNA subtractive library, revealed that the quantity of RNA was good enough to construct a cDNA (complementary DNA) library or a cDNA subtractive library. This method may be also applicable for the appressorium RNA isolation of other pathogenic fungi in which conidia differentiate into appressoria in the early stages of host infection.  相似文献   

7.
Ustilago maydis is a ubiquitous pathogen of maize and a well-established model organism for the study of plant-microbe interactions. This basidiomycete fungus does not use aggressive virulence strategies to kill its host. U. maydis belongs to the group of biotrophic parasites (the smuts) that depend on living tissue for proliferation and development. Here we report the genome sequence for a member of this economically important group of biotrophic fungi. The 20.5-million-base U. maydis genome assembly contains 6,902 predicted protein-encoding genes and lacks pathogenicity signatures found in the genomes of aggressive pathogenic fungi, for example a battery of cell-wall-degrading enzymes. However, we detected unexpected genomic features responsible for the pathogenicity of this organism. Specifically, we found 12 clusters of genes encoding small secreted proteins with unknown function. A significant fraction of these genes exists in small gene families. Expression analysis showed that most of the genes contained in these clusters are regulated together and induced in infected tissue. Deletion of individual clusters altered the virulence of U. maydis in five cases, ranging from a complete lack of symptoms to hypervirulence. Despite years of research into the mechanism of pathogenicity in U. maydis, no 'true' virulence factors had been previously identified. Thus, the discovery of the secreted protein gene clusters and the functional demonstration of their decisive role in the infection process illuminate previously unknown mechanisms of pathogenicity operating in biotrophic fungi. Genomic analysis is, similarly, likely to open up new avenues for the discovery of virulence determinants in other pathogens.  相似文献   

8.
The caterpillar fungus Ophiocordyceps sinensis (best known as Cordyceps sinensis) mummifies ghost moth larvae exclusively in Tibetan Plateau alpine ecosystems. Touted as "Himalayan Viagra", the fungus is highly prized due to its medical benefits and dwindling supplies. Attempts to culture the sexual fruiting-body have failed and the huge market demand has led to severe devastation of local ecosystems and to the fungus heading towards extinction. By genome sequencing, we establish that unlike related insect pathogens O. sinensis contains two compatible mating-type genes in its genome and is self-fertile, i.e. homothallic. However, sexual processes are only initiated under native environmental conditions. O. sinensis resembles biotrophic plant pathogens in having a genome shaped by retrotransposon-driven expansions. The resulting changes in gene content suggest that O. sinensis has a biphasic pathogenic mechanism beginning with stealth pathogenesis in early host instars. O. sinensis is the first psychrophilic fungus sequenced and is adapted to extreme cold with putative antifreeze proteins and mechanisms for increasing lipid accumulation and fatty acid unsaturation. We hypothesize that for the inbreeding O. sinensis the massive proliferation of retrotransposons provides a tradeoff between the advantages of increased genetic variation independent of sexual recombination and deletion of genes dispensable for its specialized pathogenic lifestyle.  相似文献   

9.
Magnaporthe oryzae is a model for plant pathogenic filamentous fungi. We have assembled a simple sequence repeat (SSR)-based physical map of the species, using in silico sequence data. A set of 120 SSR markers was developed from the genomic sequence of the reference isolate 70-15. These markers were readily amplified from the genomic DNA of other isolates, and high levels of allelic variation characterised the parental isolates of the two crosses tested. All the markers were locatable to one of the seven M. oryzae chromosomes. An SSR-based physical in silico map was constructed, and pre-existing SSR and RFLP loci were integrated into the map, along with 23 Avr (avirulence) genes and two other genes of importance to the plant/pathogen interaction. This map provides a platform for population genetics and functional genomics studies in the model pathogen, and even in other evolu- tionally related pathogens.  相似文献   

10.
枣果实皮薄肉厚、细嫩多汁,不仅在采后运输中易损坏,也极易受微生物侵染而腐烂变质。对造成枣果实采后腐烂变质的病原真菌进行分离筛选,结合形态学观察、真菌rDNA内转录间隔区(internal transcribed spacer,ITS)的序列分析构建进化树,同时进行菌株的回接及病斑病症的验证,最终从采后贮藏过程中自然发病的冬枣和骏枣果实上分别分离到3株(221# 、227# 、232# )和2株(229# 和230# )丝状病原真菌。经形态学初步鉴定菌株221# 和227# 为镰孢菌,229# 和232# 为葡柄霉,230# 为短柄霉属真菌,通过rDNA ITS区序列分析,鉴定221# 为木贼镰孢菌(Fusarium equiseti),227# 为变红镰孢菌(Fusarium incarnatum),229# 为番茄匍柄霉(Stemphylium lycopersici),230# 为产酶短梗霉(Aureobasidium proteae),232# 为葡柄霉(Stemphylium armeriae)。目前这5种病原真菌均未发现可导致枣果实采后病害发生的报道,其中Stemphylium armeriae未见引起植物病害的报道。通过挖掘出更多的引起枣果实病害的病原真菌种类,希望为枣果实病害生物防治措施的研究提供参考依据。  相似文献   

11.
利用3年生黑松为接种材料,研究在9种不同真菌上取食的松材线虫的繁殖和致病力变化。结果表明,真菌对松材线虫的繁殖和致病力有显著影响。松材线虫在9种真菌上取食后,松材线虫繁殖力和致病力从大到小而依存的真菌依次为灰葡萄孢(Botrytis cinerea)、拟盘多毛孢(Pestalotiopsis sp.)、盘多毛孢(Pestalotia sp.) 、拟茎点霉(Phomopsis sp.)、茎点霉(Phoma sp.)、头孢菌(Cephalosporium sp.)、交链孢(Alternaria sp.) 、炭疽菌(Colletotrichum sp.)、长喙壳(Ceratocystis sp.)。实验表明松材线虫的繁殖力与其致病力变化相一致。  相似文献   

12.
Fallen leaves of Ficus altissima, F. virens, F. benjamina, F. fistulosa and F. semicordata, were collected in Chiang Mai Province in northern Thailand and examined for fungi. Eighty taxa were identified, comprising 56 anamorphic taxa, 23 ascomycetes and l basidiomycete. Common fungal species occurring on five host species with high frequency of occurrence were Beltraniella nilgirica, Lasiodiplodia theobromae, Ophioceras leptosporum, Periconia byssoides and Septonema harknessi. Colletotrichum and Stachybotrys were also common genera. The leaves of different Ficus species supported diverse fungal taxa, and the fungal assemblages on the different hosts showed varying overlap. The fungal diversity of saprobes at the host species level is discussed.  相似文献   

13.
In this study the MTP1 gene, encoding a type III integral transmembrane protein, was isolated from the rice blast fungus Magnaporthe oryzae. The Mtp 1 protein is 520 amino acids long and is comparable to the Ytp 1 protein of Saccharomyces cerevisiae with 46% sequence similarity. Prediction programs and MTP1-GFP (green fluorescent protein) fusion expression results indicate that Mtp 1 is a protein located at several membranes in the cytoplasm. The functions of the MTP1 gene in the growth and development of the fungus were studied using an MTP1 gene knockout mutant. The MTP1 gene was primarily expressed at the hyphal and conidial stages and is necessary for conidiation and conidial germination, but is not required for pathogenicity. The Amtpl mutant grew more efficiently than the wild type strain on non-fermentable carbon sources, implying that the MTP1 gene has a unique role in respiratory growth and carbon source use.  相似文献   

14.
植物差异表达基因克隆技术及研究进展   总被引:2,自引:0,他引:2  
随着分子生物学技术的深入发展,植物基因组研究已经由以全基因组测序为目标的结构基因组学转向以基因功能鉴定为目标的功能基因组学研究,目前分离并克隆差异表达基因已成为生命科学研究的热点.近些年来,国内外学者发展了多种分析差异表达基因的技术来研究植物在不同发育阶段、不同生理状态下的基因表达状况,掌握了生命活动过程中的重要信息.文章对建立在RNA水平上克隆植物未知差异表达基因的几种关键技术及其研究进展进行了综述,阐述了各技术的原理、技术路线、优缺点及相应的改进方法,并对它们在植物抗逆研究中的应用现状及前景作了展望.  相似文献   

15.
Hypocrea/Trichoderma is a genus of soil-borne or wood-decaying fungi containing members important to mankind as producers of industrial enzymes and biocontrol agents against plant pathogens, but also as opportunistic pathogens of immunocompromised humans and animals, while others can cause damage to cultivated mushroom. With the recent advent of a reliable, BarCode-aided identification system for all known taxa of Trichoderma and Hypocrea, it became now possible to study some of the biological fundamentals of the diversity in this fungal genus in more detail. In this article, we will therefore review recent progress in (1) the understanding of the geographic distribution of individual taxa; (2) mechanisms of speciation leading to development of mushroom diseases and facultative human mycoses; and (3) the possible correlation of specific traits of secondary metabolism and molecular phylogeny.  相似文献   

16.
Rice (Oryza sativa L.) is important to food security and is also an excellent model plant for numerous cereal crops. A functional genomics study in rice includes characterization of the expression dynamics of genes by quantitative real-time PCR (qPCR) analysis; this is a significant key for developing rice varieties that perform well in the face of adverse climate change. The qPCR analysis requires the use of appropriate reference genes in order to make any quantitative interpretations meaningful. Here, the new potential reference genes were selected from a huge public database of rice microarray experiments. The expression stability of 14 candidates and 4 conventional reference genes was validated by geNorm PLUS and NormFinder software. Seven candidates are superior to the conventionally used reference genes in qPCR and three genes can be used reliably for quantitating the expression of genes involved in abiotic stress responses. These high-quality references EP (LOC_Os05g08980), HNR (LOC_Os01g71770), and TBC (LOC_Os09g34040) worked very well in three indica genotypes and one japonica genotype. One of indica genotypes including the Jasmine rice, KDML105 developed in Thailand for which no reference genes have been reported until now.  相似文献   

17.
介绍了真菌,尤其是丝状真菌在基因组学(包括比较基因组学)和功能基因组学(包括转录组学、蛋白质组学、代谢物组学)等研究领域的进展情况。  相似文献   

18.
Agilawood is a costly heartwood medicine obtained from Aquilaria sinensis with active ingredients mainly composed of volatile and semi-volatile substances. However, the formation time of agilawood is quite long and little is known about its formation mechanism. Two highly active fungi obtained from natural agilawood were inoculated on A. sinensis trees to understand their interaction processes and elucidate the transformation rules of induced chemical compositions within different test periods. The results demonstrated that the fungi could successfully colonize living tissues and cells and activate the host defense system, resulting in agilawood accumulation. With increasing time, the main components of A. sinensis converted into constituents or analogs of agilawood and the host exhibited "self-injury" to prevent fungal intrusion and protect other tissues. The data presented here could provide scientific basis for producing agilawood with the two new fungi in a safe, feasible, and sustainable manner without destroying rare Aquilaria plants.  相似文献   

19.
Genome sequence of the plant pathogen Ralstonia solanacearum   总被引:49,自引:0,他引:49  
Ralstonia solanacearum is a devastating, soil-borne plant pathogen with a global distribution and an unusually wide host range. It is a model system for the dissection of molecular determinants governing pathogenicity. We present here the complete genome sequence and its analysis of strain GMI1000. The 5.8-megabase (Mb) genome is organized into two replicons: a 3.7-Mb chromosome and a 2.1-Mb megaplasmid. Both replicons have a mosaic structure providing evidence for the acquisition of genes through horizontal gene transfer. Regions containing genetically mobile elements associated with the percentage of G+C bias may have an important function in genome evolution. The genome encodes many proteins potentially associated with a role in pathogenicity. In particular, many putative attachment factors were identified. The complete repertoire of type III secreted effector proteins can be studied. Over 40 candidates were identified. Comparison with other genomes suggests that bacterial plant pathogens and animal pathogens harbour distinct arrays of specialized type III-dependent effectors.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号