首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 165 毫秒
1.
高强钢具有强度高、韧性好、可焊性优良等优点,其在土木工程中的应用越来越广泛.高强钢在火灾下的力学性能是钢结构抗火设计的重要影响因素.为获取高温下与高温后Q550D高强钢材料的力学性能,基于稳态试验方法,对Q550D高强钢开展了拉伸试验,考察了不同冷却方式(自然冷却与浸水冷却)与过火温度对Q550D高强钢力学性能的影响,获取了不同温度工况下Q550D高强钢的应力-应变曲线和高温下与高温后各项力学性能参数指标(弹性模量、屈服强度、抗拉强度和极限伸长率)的折减系数,并将试验结果与已有规范和文献结果进行了对比分析.结果表明:高温下Q550D高强钢的弹性模量、屈服强度、抗拉强度随着试验温度的升高而逐渐下降,其折减系数均低于各国规范的取值;当温度超过400℃时,高温下Q550D高强钢的弹性模量、屈服强度和抗拉强度下降明显,当温度超过700℃时,3个力学性能指标均接近于零;不同冷却方式与过火温度对Q550D高强钢的弹性模量影响不大;当温度低于600℃时,高温冷却后Q550D高强钢的屈服强度和抗拉强度的折减并不明显,当温度超过600℃时,屈服强度和抗拉强度显著下降,且自然冷却方式下的下降程度更大;高强钢与普通钢高温冷却后的屈服强度与抗拉强度存在较大差别.  相似文献   

2.
为考察高强度螺栓高温后材料力学性能,对10.9级M22大六角头高强度螺栓高温冷却后试样进行拉伸试验,研究了不同加热温度、不同冷却方式下高强度螺栓材料的屈服强度、抗拉强度和弹性模量的变化规律.结果表明,两种冷却方式下,高强度螺栓材料力学性能的变化规律基本一致,当加热温度不超过400℃时,高强度螺栓材料的屈服强度、抗拉强度基本不受加热温度的影响;当温度不超过300℃时,弹性模量基本不变.随着温度升高,高强度螺栓材料的屈服强度、抗拉强度、弹性模量迅速下降,当温度达到600℃时,高强度螺栓材料的屈服强度、抗拉强度、弹性模量下降到常温的70%~78%.根据试验结果,拟合得到高强度螺栓高温后材料的屈服强度、抗拉强度和弹性模量的折减系数计算公式.屈服强度、抗拉强度的折减系数结果与部分文献的结果一致,但弹性模量折减系数相差较大,有待进一步研究.  相似文献   

3.
高温后预应力钢绞线性能的试验研究   总被引:7,自引:0,他引:7  
试验研究预应力钢绞线在经历高温作用并冷却至室温后的力学性能。考虑不同冷却方式对其性能的影响,得到经历不同高温后钢绞线的极限强度、名义屈服强度、弹性模量和延伸率及其变化规律,给出力学模型。为过火预应力混凝土结构的剩余承载力计算及损伤评估提供依据,具有较高实用价值。  相似文献   

4.
HRB500级高强钢筋高温后的力学性能试验   总被引:2,自引:1,他引:1  
对HRB500高强钢筋在高温后的力学性能进行试验,研究不同受火温度对其力学性能的影响,以及高温后的应力-应变关系曲线图的变化规律,并提出相应的力学模型.结果表明,经历高温作用并冷却后,高强钢筋的屈服强度、极限强度、弹性模量、延伸率和截面收缩率等力学性能随所经历的温度的不同而变化,变化规律也不相同. 钢筋的应力-应变关系发生一定的变化,但是一般仍然出现明显的屈服阶段和强化阶段,屈服台阶的高度随着温度的升高而降低;高强钢筋的弹性模量的变化很小.  相似文献   

5.
通过对TSZ410铁素体不锈钢进行高温稳态试验研究,得到了高温下初始弹性模量、名义屈服强度、抗拉强度、断后伸长率等主要力学性能指标,对比分析了Rasmussen模型和Gardner模型,并基于Rasmussen模型,提出了TSZ410不锈钢硬化指数的计算公式,建立了高温应力-应变本构关系,并与Q235B、S30408奥氏体不锈钢、EN 1.4003不锈钢进行了对比,研究揭示了温度对其力学性能的影响规律。研究表明,TSZ410不锈钢的初始弹性模量、名义屈服强度、抗拉强度随着温度的升高而逐渐下降,特别是在400~700℃温度段的下降速度最为显著;温度700℃时,初始弹性模量约为常温下的40%,名义屈服强度和抗拉强度降为常温下的15%左右。TSZ410不锈钢在高温下强度损失明显大于Q235B,而刚度损失明显小于Q235B;在温度低于500℃时,TSZ410不锈钢的强度损失显著小于S30408奥氏体不锈钢;当温度高于500℃后,则相反。  相似文献   

6.
为了得到不同加热温度和冷却方式对600 MPa级高强钢筋力学性能的影响规律,首先进行27组600MPa级高强钢筋高温加热,并采用不同冷却方式进行降温处理,然后进行静力拉伸试验,对断口纵向组织进行了观察,分析不同加热温度和冷却方式对钢筋力学性能参数的影响规律,并与其他等级强度的钢筋进行了比较,最后根据试验数据拟合得到600MPa级高强钢筋经不同冷却方式后各力学性能参数随加热温度变化的表达公式。研究结果表明:当温度较低时冷却方式对钢筋组织基本没有影响,而加热温度较高时,不同冷却方式对其组织影响较大;当加热温度低于550℃时,钢筋力学性能基本没有变化,当加热温度为625℃时,屈服强度、极限强度和弹性模量参数有下降的趋势,而断后伸长率基本不变;当加热温度大于775℃时,不同冷却方式对其力学性能影响差别较大,特别是采用浸水冷却方式的试件,试件断口无颈缩现象,断面较整齐,应力-应变曲线无屈服台阶,屈服强度和极限强度增加较大,断后伸长率急速降低;在925℃时,断后伸长率只有1.7%,具有明显的脆性破坏特征,而采用另外2种冷却方式的试件断后伸长率约为30%,差别较大。  相似文献   

7.
针对钢结构抗火设计中高强度结构钢材料力学性能参数的取值进行研究.为研究最常用的高强度结构钢S460N在高温下的力学性能,对其在稳态和瞬态不同火灾情况下进行材性试验,得到不同温度下S460N的弹性模量、屈服强度和极限强度的折减系数,并与现有文献和现行主要钢结构设计规范进行对比分析.通过与现有文献中欧标钢S460N和S460M、国产钢Q460以及普通钢的研究结果的比较,发现高温下结构钢的力学性能退化取决于钢材种类及其加工工艺.因此,各国现行的钢结构设计规范基于普通钢研究成果得出的设计建议不适用于高强度结构钢.此外,给出可用于指导设计的高强度结构钢S460N在高温下力学性能退化的拟合公式,并对其进行校验.  相似文献   

8.
为研究不同高温后掺纳米碳酸钙(NC)混凝土的劈裂抗拉性能,进行了不同NC掺量(0%、0.5%、1.0%、1.5%、2.0%和3.0%)混凝土的高温试验,对分别采用自然冷却和喷水冷却方式后的NC混凝土进行了加载试验.分析了温度、NC掺量及冷却方式等对混凝土劈裂抗拉强度的影响.结果表明:随着受热温度的增加,NC混凝土的劈裂抗拉强度逐渐降低.在混凝土中添加适量的NC可以改善混凝土高温后的劈裂抗拉性能.不同的冷却方式对NC混凝土劈裂抗拉强度有不同的影响:高温(尤其是400℃以上)后采用喷水冷却的混凝土静置两周后,其劈裂抗拉强度均高于采用自然冷却后的劈裂抗拉强度.同时,800℃后,自然冷却的NC混凝土试块在室内放置两周后多数发生自行坍塌情况,几乎完全丧失强度.研究结果可为进一步开展纳米混凝土高温后的其它力学性能和耐久性能提供参考.  相似文献   

9.
超高强钢S960火灾后力学性能试验研究   总被引:1,自引:0,他引:1  
通过试验研究超高强钢S960过火冷却至常温后的力学性能,得到过火高温对超高强钢S960弹性模量、屈服强度、极限强度以及应力-应变曲线的影响规律.结果表明,钢材火灾后的力学性能取决于钢材的等级和生产加工工艺.通过对试验数据进行数值拟合,给出可准确表达S960火灾高温后材料力学性能剩余程度的预测公式.  相似文献   

10.
对S32001双相型不锈钢进行了高温稳态拉伸试验研究,得到了高温下初始弹性模量、名义屈服强度、抗拉强度、断后伸长率等主要力学性能指标及其变化规律;利用试验数据研究了Rasmussen模型和Gardner模型的适用性,并基于Rasmussen模型提出了S32001不锈钢硬化指数的计算公式,建立了高温下不锈钢材料本构关系表达式;对比分析了S32001不锈钢与其他种类不锈钢及Q235B结构钢的高温力学性能。研究表明,S32001不锈钢的屈服强度和极限强度随温度升高下降,600℃时低于常温时的50%,但高温下材料强度明显高于S30408不锈钢,具有更加优越的抗火性能。该研究结果可用于结构受火性能研究和抗火设计。  相似文献   

11.
在离心机高速旋转过程中,装在离心机长臂端的工程试验件受到很大的向心力作用.在极端条件下,试验件可能会甩离离心机臂而撞击到离心机室的墙壁或防护栏,造成结构破坏或人员伤亡的重大事故.分析了几种试验件撞击到防护栏上的撞击效应.防护栏采用由槽钢作立柱,角钢为横梁,相互交叉构成框架,然后再蒙上一层钢蒙皮构成.研究过程中,采用动态接触技术模拟了试验件与防护栏的撞击,应用弹塑性本构关系描述了试验件与防护栏的材料动态力学性能.研究结果表明,工程试验件的几何构形、质量、撞击速度、防护栏的强度和刚度以及钢蒙皮厚度对于离心场环境中结构的安全防护效果起着非常重要的作用.  相似文献   

12.
为有效提高砂土填料的抗剪强度并降低其重度,利用废弃轮胎橡胶颗粒的良好表面摩擦性与低重度特性,将其掺入到砂土填料,形成加筋机制,通过直剪和三轴压缩试验,研究多种掺入比与不同围压条件下砂土剪切性状,对应力-应变特征进行模拟,并提出模型参数.根据实验结果,峰值剪切强度随橡胶颗粒掺入量增加而减小,峰值偏应力或峰值应力比在300~400 kPa围压下随橡胶掺入量增加而减小,在100~200 kPa围压下,基本不变,砂土泊松比受橡胶颗粒掺入量影响,并随主应力发生"弯转".围压小于200 kPa,掺入10%~20%的轮胎橡胶颗粒可提高砂土的抗剪强度,并降低材料重度,砂胶混合材料应力-应变关系可用Duncan-Chang模型模拟.  相似文献   

13.
为评价公路隧道衬砌裂缝的碳纤维布补强效果,同时为类似隧道工程提供加固措施依据,利用有限元软件对裂缝补强效果进行了详细的计算分析。通过现场检测某深埋长大公路隧道交叉口段二次衬砌的开裂状况,从地质构造学角度分析裂缝成因表明:衬砌开裂是由于围岩地应力侧压力偏大,侧洞开挖后导致衬砌应力重分布而产生向拉应力超过混凝土抗拉极限强度而产生局部开裂。基于有限元理论对隧道开裂段加固前后衬砌结构的应力场及位移场进行了对比分析,同时分析了碳纤维布的变形状况。结果表明,当二次衬砌开裂后将碳纤维布粘贴于衬砌内表面,由于碳纤维布参与承担荷载,对混凝土衬砌受拉变形起约束作用,碳纤维作为抗拉材料能有效控制衬砌裂缝的扩展。  相似文献   

14.
针对WiMAX系统宏分集切换问题,提出了2种宏分集切换算法——MDHO和MDHO-H。MDHO算法对已有的Z算法进行了改进,选择信号强度最强的m个基站做为分集站。MDHO-H算法在MDHO算法的基础上加入了滞后因子。在相同切换场景下对3种算法进行了仿真比较。结果表明,MDHO算法和MDHO-H算法的切换次数比Z算法的切换次数分别减少了24%和53%。  相似文献   

15.
钢纤维混凝土板抗爆数值模拟   总被引:1,自引:1,他引:1       下载免费PDF全文
钢纤维混凝土由于其优良的强度和延性而在防护结构中被广泛应用.对四边简支的钢纤维混凝土板在爆炸荷载作用下的响应进行了数值模拟,比较分析了折合距离、板厚度对其动态响应的影响.钢纤维混凝土的本构模型采用J-H-C模型,考虑了损伤和应变率效应.从计算结果可以看出,在炸药量相同的情况下,折合距离、板厚均对板中心的位移有较大的影响.研究成果可以对防护结构的设计提供理论参考.  相似文献   

16.
为了提高隧道进出口、连续弯道、长大纵坡及收费站广场等特殊路段的路面抗滑性能,减少交通事故的发生,针对双组分薄层铺装材料,在分析其固化机理基础上,提出了薄层铺装材料的不同组分技术标准.通过对该薄层铺装材料的剪切性能测试,确定了填充料的最佳用量、粒径范围与技术指标;通过拉伸试验、拉拔试验、剪切试验系统研究了该铺装材料的综合性能.结果表明,薄层抗滑铺装不仅具有优良的抗拉强度、粘结性能、剪切性能、抗腐蚀性能、水稳定性能,而且具有优良的抗滑性能,适合在隧道进出口及弯道等特殊路段使用.  相似文献   

17.
为减少干线上车辆的平均延误时间,提出了一种基于多智能体技术的动态双向绿波带智能控制算法。采用两层递阶结构和模糊逻辑对城市交通干线进行实时协调控制。上层是协调控制器智能体,根据一段时间内交通流数据计算干线上优化的公共周期时间和上下行相位差,下层是路口控制器智能体,确定每个周期内各交叉口的绿信比。周期依照关键路口饱和度的大小由模糊控制算法进行优化,而相位差根据上下行速度进行计算,绿信比基于历史和实时的交通数据确定。实例分析表明该双向绿波带控制算法能够有效减少车辆在干线上的平均停车次数。  相似文献   

18.
为了研究碳纤维布加固后预应力空心板延性的变化,进行了7块碳纤维布加固预应力空心板试件在均布荷载作用下的试验,分析了碳纤维布粘贴量和粘贴方式对延性的影响,提出了碳纤维布加固预应力空心板曲率延性系数计算方法。试验结果表明,碳纤维布粘贴量和粘贴方式对位移延性系数影响明显,随着碳纤维布粘贴量的增加,试件位移延性系数减小,单层双幅粘贴方式下,延性系数最大。曲率延性系数计算值与位移延性系数之比在0.82左右,所提出的曲率延性系数计算方法是偏于安全的,具有较高的计算精度。  相似文献   

19.
利用内径57mm的一级气体炮,对直径50mm厚度10mm的高强混凝土(HSC)及3%的钢纤维高强混凝土(SFRHSC)试件进行平板撞击实验,通过锰铜计测试试件中应力波波形,分析应力波传播速度,得到了材料在应变率约10^5s^-1,压力0.65GPa-2.3GPa下的冲击绝热关系,结合现有试验,给出HSC及SFRHSC的状态方程。  相似文献   

20.
地下建筑内一旦发生爆炸,其影响范围可能波及地面数百米的范围.为了深入了解地下爆炸过程及其影响范围,采用数值计算方法,对一个典型的地下建筑在爆炸荷载作用下的响应进行了数值模拟.模拟了爆炸波在地下建筑内以及经由楼梯、电梯井直至地表的传播过程,并且计算了爆炸波引起的地面震动.还根据美国DoD规范和北约NATO规范规定的压力和地面震动的安全准则,对数值模拟结果进行了分析,从而得到了地下建筑内发生爆炸事故对地表的影响范围.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号