首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 76 毫秒
1.
齿轮副静态传递误差是衡量齿轮副动态性能的一个主要参数。为了能够实现在设计阶段预测齿轮系统的动态特性,减小齿轮系统的振动及噪声,并能够实现齿轮系统动态设计,首先需要确定啮合齿轮副误差激励的大小。为此,该文分别计算了齿轮副综合误差及弹性变形,并首次考虑误差影响因素的边界模糊性,把模糊数的概念引入到齿轮副静态传递误差的计算中,给出了模糊静态传递误差的计算方法,从而为实现齿轮系统的模糊动态优化设计打下了基础。  相似文献   

2.
修形齿轮的最佳修形量和修形长度的确定   总被引:4,自引:1,他引:4  
建立了齿轮动态分析的数学模型,在齿轮振动模型中考虑了轮齿刚度的变化、齿轮误差和齿廓修形,用数值法求解了振动微分方程式,计算出齿轮动态响应,在动态分析的基础上建立了齿轮动态性能优化数学模型,以齿轮动态性能最优为目标,采用优化设计方法,确定最佳齿廓修形量和修形长度。  相似文献   

3.
介绍了利用Mathcad软件进行齿轮减速器齿轮参数优化设计的一种新方法,该法相对传统齿轮参数设计方法而言,具有操作简单、运行效率高的特点,应用该方法对二级齿轮减速器齿轮参数进行了优化设计,结果表明,优化后的齿轮减速器总中心距比用传统方法设计的有明显减少。  相似文献   

4.
针对非圆齿轮的时变速比特性,采用多段函数构造法实现了非圆齿轮副预设速比函数的再现设计;结合工程实际,提出了一种新型的非圆齿轮无级调速机构,推导了非圆齿轮无级调速机构的基本参数与输出速比的影响规律。根据机械原理、齿轮啮合理论与现代设计方法,采用SolidWorks和Adams等软件,建立了非圆齿轮无级调速机构的仿真模型,对非圆齿轮无级调速机构进行仿真,结果表明:改变非圆齿轮副间的相位差,该无级调速机构可以得到变化的输出速比,获得了该无级调速机构的输出速比与相位差的影响规律;搭建了非圆齿轮实验台,得到非圆齿轮副的实验速比与理论速比变化趋势一致,最大实验误差6.8%,验证了无级调速机构和非圆齿轮理论分析的可行性和正确性。  相似文献   

5.
依据非圆齿轮啮合原理,确定轮齿在节曲线上的位置,并推导了轮齿的齿廊,齿顶,齿根的曲线方程,应用VC编程及交互技术实现了非圆齿轮齿形的计算机辅助设计,增强了非圆齿轮设计的直观性,为非圆齿轮的传动模拟奠定了基础。  相似文献   

6.
使用温压成形技术制造的粉末冶金斜齿轮耐磨性好.成本低、文中利用有限元法建立了包含齿轮副、传动轴、轴承和箱体的齿轮系统完整的动力学模型,使用有限元分析软件MSC.Nastran计算了在齿轮动态激励下粉末冶金斜齿轮系统的振动响应,并与38CrMoAl刚性齿轮系统进行比较,通过振动试验验证了有限元分析模型,为粉末冶金斜齿轮传动系统的设计奠定了基础.  相似文献   

7.
随着科技的进步、经济的发展,齿轮测量仪器的发展也在不断发生变化,通过介绍齿轮在生产生活中的重要作用,分析出齿轮测量技术以及齿轮测量仪器有着较大的发展潜力。并对齿轮测量仪器的发展做了简要的阐述。  相似文献   

8.
非圆齿轮节曲线的曲率半径为变量,要求加工非圆齿轮时必须使刀具在切齿的同时,相对齿坯回转中心作特定规律的径向移动。在对数控滚切非圆齿轮所必需的4种控制运动进行分析计算的基础上,建立了基于四轴联动立式加工中心的非圆齿轮滚齿加工的联立数学模型,提出了在通用性较强的加工中心上滚切非圆齿轮的实施方案,为非圆齿轮的数控加工探索了一条新的途径。  相似文献   

9.
杨开平 《科技信息》2010,(8):I0384-I0384
齿轮传动由于优点较多得到广泛应用,但在使用中常常会出现不正确的啮合,影响齿轮的使用寿命。本文从齿轮装配和调整轴承两个方面介绍了保证齿轮副正确啮合的措施,减小了啮合时的噪声和冲击,使齿轮副可靠地工作。  相似文献   

10.
王佃文 《甘肃科技》2011,27(24):79-80,73
80t电力机车走行部从动齿轮寿命短,事故频繁。通过对从动齿轮强度进行校核,分析了从动齿轮断裂的原因,并提出了延长从动齿轮使用寿命的几点建议。  相似文献   

11.
讨论了齿轮齿数、斜齿轮螺旋角、齿轮变位系数的选择,使其既能满足动力性、经济性等对各档传动比的要求;又能使中间轴上的轴向力互相抵消,提高轴承寿命。通过采用高度变位和角度变位,满足中心距的要求及齿轮强度、啮合性能的要求。  相似文献   

12.
闫宇飞  汪瑞  许锋 《科学技术与工程》2021,21(14):6057-6062
针对某型飞机在服役过程中出现的起落架间隙型摆振问题,基于起落架柔性多体动力学模型,采用L-N(Lankarani-Nikravesh)接触理论建立了含间隙旋转副、球副动力学子模型,并采用起落架动力试验的结果对模型进行效验;定义了间隙位置对起落架间隙型摆振的影响分类;然后研究了运动副副元素刚度、运动副间隙大小以及飞机滑跑速度对起落架间隙型摆振的影响.结果表明:转环与上扭力臂处和支柱与下扭力臂处间隙对机轮低频摆振影响要比扭力臂间间隙影响大,但对起落架摆振影响都属于第一类.轮毂轮轴间间隙影响机轮高频摆振,对起落架摆振的影响属于第二类;在设计范围内,运动副副元素弹性模量越小,机轮摆角、运动副间碰撞接触力越小;运动副间隙越大,摆角越大.飞机滑跑速度越大,机轮摆角越小.研究结论可为间隙型摆振的发生机理和防摆设计提供研究途径.  相似文献   

13.
为了完善谐波齿轮刚-柔轮系统装配与啮合过程中的力学响应及柔轮疲劳寿命研究,提出了一种基于刚柔耦合与瞬态动力学分析理论的刚-柔轮系统装配与啮合分析方法,得到了更加准确与合理的谐波柔轮装配及啮合过程中柔轮的应力分布和疲劳失效位置;柔轮结构和材料参数变化对其疲劳寿命的灵敏度研究,指出了柔轮疲劳设计的关键参数,并进一步指出了柔轮的疲劳寿命尺寸效应具有敏感区间,据此建立了柔轮的疲劳寿命模型.结果表明,谐波齿轮刚-柔轮系统的力学与疲劳寿命分析不能忽略装配与啮合过程的影响;柔轮的设计应该规避疲劳寿命尺寸效应的敏感区间,以提高谐波齿轮的使用寿命.  相似文献   

14.
轮边减速器传动系统作为轮毂驱动系统的核心部件,其可靠性直接影响轮毂驱动系统乃至整车的运行可靠性和工作寿命.针对现有轮边减速器传动系统可靠性评估只考虑单一齿面失效或齿根失效的不足,提出考虑二者失效相关的动态可靠度计算方法.首先,在考虑齿轮材料强度退化的前提下分别建立齿面、齿根强度退化随机模型;然后,基于应力-强度干涉理论并采用Monte Carlo方法计算得到2种失效形式下考虑强度退化的齿轮动态可靠度曲线;其次,根据Copula理论建立同时考虑2种失效形式相关性的单一齿轮动态可靠度数学模型;最后,应用Sklar定理对零件失效过程的相关性进行描述,建立轮边减速器传动系统动态可靠度数学模型.通过算例验证结果表明:该方法能够揭示多失效形式和多因素相关条件下系统疲劳寿命与各零部件疲劳寿命之间的关系,可以为轮边减速器传动系统的可靠性评估和预测提供理论依据.  相似文献   

15.
为提高超精密齿轮的齿廓精度,首先分析了大平面砂轮的磨齿特点,推导出了砂轮磨齿线速度与齿轮进给速度的表达式,为大平面砂轮磨齿系统的动态性能研究提供了理论基础.然后研究了大平面砂轮的磨损规律,得出在均匀磨齿过程中砂轮的磨损程度是不均匀的,提出选择品质合适的砂轮、微量磨削、勤修精修砂轮及在半塞实状态下停车等措施以减小被磨齿轮的齿廓偏差.最后通过超精密磨削实验,研制出了1级齿廓精度的超精密齿轮.  相似文献   

16.
针对当前数控技术实验项目较少的问题,在现有的数控成形磨齿机上开发了成形砂轮数控修整实验系统。成形法磨齿的关键是解决好渐开线廓形砂轮的修整问题。根据渐开线形成原理,研究了等误差直线逼近渐开线的算法。利用VC++6.0编制了渐开线廓形砂轮数控修整程序,并进行了砂轮修整试验。试验结果表明所提出的算法是有效的,开发的程序可行,界面友好。该实验的完成为进一步开发数控成形磨齿系统奠定了基础。  相似文献   

17.
谐波齿轮传动机构的关键零件是柔轮,它决定了传动机构的使用寿命。由于柔轮的结构和受力比较复杂,从理论上进行分析柔轮的动态应力是很困难的,故采用实验方法来研究。用电测应力法,通过遥测的方式进行实验记录,从此得出柔轮上几个特征截面的应力随载荷增长的变化曲线,确定危险截面的位置和影响危险应力的因素,给理论研究和改进设计指出方向。  相似文献   

18.
提出一种缸内压力信号测试新方法.该方法无需在发动机自由端安装角标器,仅需在飞轮端安装传感器获得飞轮齿圈信号即可,且易于安装.利用高速内时钟数据采集卡同时测试缸内压力信号及齿圈信号,通过Newton插值算法得到齿圈信号过零点的精确时刻;基于发动机在飞轮齿圈转过1个齿的时间内转速恒定的假设,在每个齿内通过插值运算,将时间域的缸内压力信号转化为角度域信号.实验结果表明,提出的方法工作可靠,数据处理的结果满足燃烧过程分析的需要.  相似文献   

19.
针对非圆齿轮精加工难题,提出了一种凸节曲线非圆齿轮蜗杆砂轮磨削方法。将蜗杆砂轮简化为齿条刀,建立齿条刀展成加工凸节曲线非圆齿轮的运动数学模型。根据数控蜗杆砂轮磨齿机结构及展成加工原理,进行机床电子齿轮箱规划,确定主动轴与跟随轴,并利用等弧长加工原理推导出机床同步轴间的同步系数,建立磨削加工联动模型。最后,给出了蜗杆砂轮与非圆齿轮的手动对刀方法,并对蜗杆砂轮安装角、轴向位置及沿齿轮轴向位置参数进行调整。  相似文献   

20.
采用有限元分析方法,模拟分析螺旋锥齿轮坯料咬合、滚压分齿、连续滚轧成形及滚轧整形4个过程中滚轧轮的应力分布。研究结果表明:在坯料咬合和分齿阶段,滚轧轮应力主要分布于齿顶位置;在连续滚轧成形阶段,滚轧轮应力由齿顶的位置逐渐扩展到齿根,并随着滚轧过程的进行逐渐增大;在整形阶段,滚轧轮与坯料的接触面积最大,滚轧轮应力主要集中在与坯料接触的两个齿,在齿顶处的接触应力较齿根处大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号