首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nitrogen-doped reduced graphene oxide(NrGO)sheets decorated with Co(OH)_2nanoflakes were prepared by a single-step hydrothermal process.The morphological and structural characterizations of as synthesized Nr GO@Co(OH)_2nanoflakes were performed by field emission scanning electron microscopy(FESEM),EDX-mapping and X-ray diffraction(XRD).Nr GO@Co(OH)_2nanoflakes modified glassy carbon electrode(GCE)was used for electrochemical sensing of dopamine in neutral medium.The nanocomposite modified electrode showed enhanced electrochemical sensing ability for the detection of dopamine and the limit of detection(Lo D)was found to be 0.201μM with a sensitivity value of 0.0286±0.002 m A m M~(-1).Interference studies revealed that Nr GO@Co(OH)_2─GCE endow excellent selectivity for DA detection even in the presence of higher concentration of common co-existing physiological interfering analytes.Additionally,proposed sensor demonstrated excellent performance in urine samples with promising reproducibility and stability.  相似文献   

2.
Bionic titania coating carbon multi-layer material was fabricated by employing canna leaves as substrate and carbon precursor. Titania nanocrystals were assembled and coated on the natural films. The carbonation treatment under pure N_2 atmosphere yielded the ultrathin multi-film hybrid material. The carbon layer was coated with small anatase titania crystallite(8–10 nm) and possessed a highly specific surface area of 248.3 m~2 g~(-1). Examination using UV–visible spectrophotometer(UV–vis) showed that the band gap of the multi-layer material was reduced to 2.75 eV, and the hydrogen production by photocatalytic splitting of water under visible light irradiation was about 302 μmol g~(-1) after six hour.  相似文献   

3.
Poly(3,4-propylenedioxythiophene)/nano-Zinic Oxide(PProDOT/ZnO) composites with the content of 3-7 wt%nano-ZnO were synthesized by the solid-state method with FeCl3 as oxidant.The structure and morphology of the composites were characterized by Fourier transform infrared(FTIR)spectroscopy,ultraviolet-visible(UV-vis) absorption spectroscopy,X-ray diffraction(XRD) and transmission electron microscopy(TEM).The electrochemical performances of the composites were investigated by galvanostatic charge-discharge,cyclic voltammetry and electrochemical impedance spectroscopy(EIS).The photocatalytic activities of the composites were investigated by the degradation of methylene blue(MB) dyes in aqueous medium under UV light irradiation.The results from FTIR and UV-vis spectra showed that the PProDOT/ZnO composites were successfully synthesized by solid-state method,and nano-ZnO had great influences on the conjugation length and oxidation degree of the polymers.Furthermore,the PProDOT/5 wt%ZnO had the highest conjugation and oxidation degree among the composites.The results of XRD analysis indicated that there were some FeCl4- ions as doping agent in the PProDOT matrix,and the content of ZnO had no effect on diffraction pattern of PProDOT.Morphological studies revealed that the pure PProDOT and composites had similar morphological structure,and all the composites displayed an irregular sponge like morphology.The results of electrochemical tests showed that the PProDOT/5 wt%ZnO had a higher electrochemical activity with a specific capacitance value of 220 F g-1 than others.The results from photocatalytic activities of the composites indicated that the PProDOT/5 wt%ZnO had better photocatalytic activity than other composites.  相似文献   

4.
Four activated carbon(AC) samples prepared from rice husk under different activation temperatures have been characterized by N2adsorption–desorption isotherms, thermogravimetric analysis(TGA–DTA), Fourier transform infrared spectroscopy(FTIR) and scanning electron microscopy(SEM). The specific surface area of AC sample reached 2681 m2 g 1under activation temperature of 800 1C. The AC samples were then tested as electrode material; the specific capacitance of the as-prepared activated carbon electrode was found to be 172.3 F g 1using cyclic voltammetry at a scan rate of 5 mV s 1and 198.4 F g 1at current density 1000 mA g 1in the charge/discharge mode.& 2014 Chinese Materials Research Society. Production and hosting by Elsevier B.V. All rights reserved.  相似文献   

5.
The corrosion activity of amorphous plates of Ca_(60)Mg_(15)Zn_(25)alloy was investigated.The biocompatible elements were selected for the alloy composition.The electrochemical corrosion and immersion tests were carried out in a multi-electrolyte fluid and Ringer's solution.Better corrosion behavior was observed for the samples tested in a multi-electrolyte fluid despite the active dissolution of Ca and Mg in Ringer's solution.The experimental results indicated that reducing concentration of NaCl from 8.6 g/dm~3for Ringer's solution to 5.75 g/dm~3caused the decrease of the corrosion rate.The volume of the hydrogen evolved after 480 min in Ringer's solution(40.1 ml/cm~2)was higher in comparison with that obtained in a multi-electrolyte fluid(24.4 ml/cm~2).The values of opencircuit potential(E_(OCP))for the Ca_(60)Mg_(15)Zn_(25)glass after 1 h incubation in Ringer's solution and a multielectrolyte fluid were determined to be-1553 and-1536 m V vs.a saturated calomel electrode(SCE).The electrochemical measurements indicated a shift of the corrosion current density(j_(corr))from 1062μA/cm~2for the sample tested in Ringer's solution to 788μA/cm~2for the specimen immersed in a multi-electrolyte fluid.The corrosion products analysis was conducted by using the X-ray photoelectron spectroscopy(XPS).The corrosion products were identified to be CaCO_3,Mg(OH)_2,CaO,MgO and Zn O.The mechanism of corrosion process was proposed and described based on the microscopic observations.The X-ray diffraction and Fourier transform infrared spectroscopy(FTIR)also indicated that Ca(OH)_2,CaCO_3,Zn(OH)_2and Ca(Zn(OH)_3)_2·2H_2O mainly formed on the surface of the studied alloy.  相似文献   

6.
The garnet-type Li_6La_3ZrTaO_(12)(LLZT) solid electrolyte films were fabricated by aerosol deposition(AD)method.Ball-milled LLZT powder with a cubic garnet structure and a particle size of 1-2 urn was used as raw material and deposited directly on a SUS316L or a glass substrate via impact consolidation.As-deposited LLZT film has a cubic garnet structure but contains Li_2CO_3 and La_2Zr_2O_7 phases.SEM observation revealed that the film consists of LLZT particles fractured into submicron size.The impurity phase formation during AD process was caused by the local heating by the collision between LLZT particles and deposition surface and reaction with CO_2.The Li~+ ion conductivity of LLZT film was estimated to be 0.24 × 10~(-5)S cm~(-1) at room temperature.Electronic conductivity of LLZT film was confirmed to be around 10~(-12) S cm~(-1),indicating the dominant Li~+ ion conduction of LLZT film.  相似文献   

7.
We developed an one-step hydrothermal method to synthesize carbon-nitrogen quantum dots(CNQDs) with oxygen-rich functional groups.The sample was characterized by TEM,AFM,FT-IR,XPS,UV-vis absorption and PL spectra.The 0/C and N/C atomic ratio of typical CNQDs with diameters of 3-6 nm are ca.0.4 and 0.2,respectively.Without noble metal cocatalyst,the photocatalytic H_2 production rate of CNQDs/TiO_2 nanofibers(NFs)(112.4 μmol h~(-1) g~(-1)) is 1.8 times higher than that of TiO_2 NFs.The good absorption of light contributes to the enhanced photocatalytic H_2 performance.The CNQDs could be promising in biomedical imaging,optical data recording storage and photo/electrocatalysis,etc.  相似文献   

8.
A regular nanostructure has been widely confirmed to result ina marked improvement in material performance in biosensing applications.In the present study,a regular nanostructured Prussian blue(PB) film with two heterogeneous crystal layers was synthesized in-situ using a secondary growth method.A PB seed layer was first controlled to form uniform cube-like crystal nuclei through an ultrasonic reaction with a single reactant.Then,well-defined 100 nm PB nanocubes were further crystallized on this seed layer using a self-assembly approach.In order to accelerate the electron transfer rate during the enzyme reaction for glucose detection,the graphene was used as the main cross-linker to immobilize glucose oxidase on the PB film.The as-prepared biosensor exhibited high electrocatalysis and electron conductivity for the detection of trace glucose with a sensitivity of141.5 μA mM~(-1) cm~(-2),as well as excellent anti-interference ability in the presence of ascorbic acid and uric acid under a low operation potential of-0.05 V.  相似文献   

9.
The treatment of 100 MeV Ag swift-heavy ion(SHI) irradiation with five different fluences(3 1010, 1 1011, 3 1011, 1 1012, and3 1012ions/cm2) was used to design optical and structural properties of amorphous(a-) As40Se60 chalcogenide thin films. Swanepoel method was applied on transmission measurements to determine the changes in optical bandgap, Tauc parameter and linear optical parameters, i.e., linear optical absorption, extinction coefficient and linear refractive index. Dispersion of the material was determined by Wemple–DiDomenico relation.Changes in nonlinear optical parameters of third-order optical susceptibility and nonlinear refractive index were determined using semi-empirical relations. Changes in surface morphology of the films were investigated using SEM observation, which indicated that fluence 3 1012ions/cm2was upper threshold limit for these films for ion treatment. It is observed that optical bandgap reduces from 1.76 eV to 1.64 eV, and nonlinear refractive index increases from 1.31 10 10[esu] to 1.74 10 10[esu]. Linear refractive index initially increases from 2.80 to 3.52(for fluence3 1010ions/cm2) and then keeps decreasing. The observed changes in optical properties upon irradiation were explained in terms of structural rearrangements by Raman measurement. The study was compiled with the previous literature to propose SHI as an effective optical engineering technique to achieve desired changes according to the need of optical/photonic applications.  相似文献   

10.
A low cost chemical co-precipitation method was employed to fabricate nanoscale Al_2O_3-GdAlO_3-ZrO_2 powder with eutectic composition. A careful control of reaction conditions was required during the preparation. The synthesized nanopowders exhibited a particle size of 20-200 nm, and were highly dispersive and uniform. The results showed that calcination temperature had an important influence on the phase constituents of the nanopowders. With increasing the calcination temperature, a phase transformation from θ-Al_2O_3 to α-Al_2O_3 and a thermal decomposition from Gd_3 Al_5O_(12)(GdAG) to GdAlO_3 and α-Al_2O_3 occurred in sequence. A calcination temperature of 1300 ℃ was needed for the crystallization of α-Al_2 O_3. These nanosized powders were consolidated via hot pressing to produce a fully densified ceramic composite with eutectic composition. The Al_2O_3-GdAlO_3-ZrO_2 ceramic hot-pressed at 1500 ℃ exhibited a relative density of 99.4%, a flexural strength of 485 MPa and a fracture toughness of 6.5 MPa m~(1/2). The ceramic had a thermal conductivity of 1.9 W m K~(-1) at 1200 ℃ and a thermal expansion coefficient of 9.49 ×10~(-6) K~(-1) at 1100 ℃.  相似文献   

11.
In this study, the hyperbolic-sine type constitutive equation was used to model the flow stress of annealed AZ61 magnesium(Mg) alloys. Hot compression tests were conducted at the temperatures ranging from 250 1C to 450 1C and at the strain rates ranging from 1 10–3s 1to 1 s 1on a Gleeble-3500 thermo-simulation machine. Constitutive equations as a function of strain were established through a simple extension of the hyperbolic sine constitutive relation. The effects of annealing heat treatments on the variations in constitutive parameters with strain were discussed. The hot compressive flow curves exhibited typical features of dynamic recrystallization. Multiple peak flow curves were observed in the annealed specimens upon testing at a strain rate of 1 10 1s–1and at various temperatures. Variations in constitutive parameters with strain were related to flow behavior and dependent on the initial conditions of the test specimens. The flow stresses of annealed AZ61 Mg alloys were predicted well by the strain-dependent constitutive equations of the hyperbolic sine function under the deformation conditions employed in this study.  相似文献   

12.
Ternary mixed metal oxide coatings with the nominal composition IrxRu(0.6-x)Ti0.4O2(x=0, 0.1, 0.2, 0.3) on the titanium substrate were prepared by thermal decomposition of a chloride precursor mixture. Surface morphology and microstructure of the coatings were investigated by Scanning electron microscopy(SEM), Field emission scanning electron microscopy(FE-SEM) and X-ray diffraction(XRD) analysis. Systematic study of electrochemical properties of these coatings was performed by cyclic voltammetry(CV) and polarization measurements. The corrosion behavior of the coatings was evaluated under accelerated conditions(j=2 A cm-2) in acidic electrolyte. The role of iridium oxide admixture in the change of electrocatalytic activity and stability of Ru0.6Ti0.4O2coating was discussed. Small addition of IrO2can improve the stability of the RuO2+TiO2mixed oxide, while the electrocatalytic activity for oxygen evolution reaction(OER) is decreased. The shift of redox potentials for Ru0.6Ti0.4O2electrode that is slightly activated with IrO2and improvement in the stability can be attributed to the synergetic effect of mixed oxide formation.  相似文献   

13.
Fine NP-AgAu(nanoporous AgAu) alloys with spongy structure was fabricated by chemical dealloying from rapidly solidified amorphous precursors Ag_(38.75-x)Cu_(38.75)Si_(22.5)Au_x(x=0, 0.5, 1 and 5). The results indicate that the addition of small content Au in precursor can refine both the ligaments and pores obviously. Among the present components of the precursors, NP-AgAu alloys dealloying from Ag_(37.75)Cu_(38.75)Si_(22.5)Au_1 had the finest spongy structure. The size of pores was 5–10 nm and the grain size of ligaments was 10–20 nm. It also had the highest surface area of 106.83 m~2g~(-1) and the best catalytic activity towards electro-oxidation of formaldehyde with the peak current of 665 mA mg~(-1).  相似文献   

14.
Cu(In,Ga)Se2 (CIGS) thin films were prepared by directly sputtering Cu(In,Ga)Se2 quaternary target consisting of Cu:In:Ga:Se 25:17.5:7.5:50 at%. The composition and structure of CIGS layers have been investigated after annealing at 550 ℃ under vacuum and a Se-containing atmosphere. The results show that recrystallization of the CIGS thin film occurs and a chalcopyrite structure with a preferred orientation in the (112) direction was obtained. The CIGS thin film annealed under vacuum exhibits a loss of a portion of Se, while the film annealed under Se-containing atmosphere reveals compensation of Se. Several solar cells with three different absorber thicknesses were fabricated using a soda lime glass/Mo/CIGS/CdS/i-ZnO/ZnO:Al/Al grid stack structure. The highest conversion efficiency of 9.65% with an open circuit voltage of 452.42 mV, short circuit current density of 32.16 mA cm2 and fill factor of 66.32% was obtained on a 0.755 cm2 cell area.  相似文献   

15.
The mechanical properties of dental composites were improved by porous diatomite and nano-sized silica (OX-50) used as co-fillers.The resin composites,filled with silanized OX-50 and silanized diatomit...  相似文献   

16.
In the present work,one dimensional La0.8Sr0.2Co0.2Fe0.8O3 δ(LSCF) nanofibers with the mean diameter of about 100 nm prepared by electrospinning were deposited on Gd0.2Ce0.8O1.9(GDC) electrolyte followed by sintering to form one dimensional LSCF nanofiber cathode. And LSCF/GDC composite cathodes were formed by introducing GDC phases into LSCF nanofiber scaffold using infiltration method. The polarization resistances for the composite cathode with an optimal LSCF/GDC mass ratio of 1/0.56 are 0.27,0.14 and 0.07 Ω cm2at 650,700 and750 1C,respectively,which are obviously smaller than 2.26,0.78 and 0.29 Ω cm2of pure LSCF nanofiber cathode. And the activation energy is1.194 eV,which is much lower than that of pure LSCF nanofiber cathode(1.684 eV). These results demonstrate that the infiltration of GDC into LSCF nanofiber scaffold is an effective approach to achieve high performance cathode for solid oxide fuel cells(SOFCs). In addition,the performance of composite cathode in this work was also compared with that of our previous nanorod structured LSCF/GDC composite cathode.  相似文献   

17.
The elastic constants,bulk modulus,shear modulus,Young’s modulus,Debye temperature,isobaric heat capacity and minimum thermal conductivity are estimated for NpO2 using plane-wave pseudopotential method within the local spin density approximation plus Hubbard U(LSDAtU) theory.The computed lattice constants are in good agreement with the available experimental results and then three independent elastic constants were computed by means of the stress–strain method.From the knowledge of the elastic constants,the values of Young’s modulus,Poisson,Debye temperature and minimum thermal conductivity are obtained and they are 218 GPa,0.288,453.5 K and0.99 Wm-1K-1,respectively.The obtained mechanical and thermal properties of NpO2 are in agreement with the previous experimental and theoretical data.Our investigations which are unobtainable from previous report can provide valuable reference in the future.  相似文献   

18.
Ultraviolet(UV) photodetectors(PDs) based on ZnO micro/nanowire(MNW) networks with Pt contacts have been fabricated on glass substrates. The PDs exhibited a high photosensitivity(5 103) for 365 nm UV light with a fast recovery time(0.2 s) at a reverse bias voltage of 2 V. The light induced modulation of Schottky barrier and MNW–MNW junction barrier was employed to account for the results. It was also observed that the PD had a high on–off ratio of 800 without external bias. The photovoltaic effect was proposed to explain the self-powered phenomenon.  相似文献   

19.
An experimental study was conducted to improve the electrical insulation of epoxy resin. The effects of boehmite, γ-alumina and α-alumina nanoparticles on the volume resistivity, dielectric strength and glass transition temperature of epoxy nanocomposites were investigated. The results showed that α-alumina nanoparticles displayed obvious advantages in enhancing electrical insulation performance of epoxy nanocomposites, compared to boehmite and γ-alumina nanoparticles. The direct current volume resistivity and breakdown strength of epoxy nanocomposite with 2.0 wt% α-alumina nanoparticles was improved to 2.2 × 10~(18)Ω cm and76.1 kV mm~(-1) respectively. And these improved values of electrical insulation properties are much higher than these of epoxy nanocomposites reported in previous studies. The main reason of these improvements may be that the epoxy/α-alumina interaction zone was enhanced by crosslink.  相似文献   

20.
Hybrid mullite sol was synthesized from an aqueous solution of aluminum nitrate (AN), aluminum isopropoxide (AIP) and tetraethylorthosilicate (TEOS), doped with boehmite sol with different ratios. Pressureless sintering of the xerogel was carried out at different temperatures in the presence of boehmite doping. The xerogel and sintered powder were characterized by FTIR, TG-DSC, XRD, SEM and bulk density. The addition of boehmite caused the formation of metaphase spinel (6Al2O3·SiO2) crystal before the appearance of mullite phase, which could lead to the formation of amorphous phase and suppress the premature formation of mullite. Both of these effects improve the densification of mullite. A maximum density about 98% of the theoretical density (TD, 3.01 g/cm3 ) of mullite could be obtained for 5 wt% boehmite addition at 1200 1C pressureless sintering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号