首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
采用对钼有一定耐受性的金属硫叶菌,通过膜反应器结合离子交换吸附,除去钼以实现镍钼矿的浸出。研究结果表明:由于膜生物反应器(MBR)中膜的超滤作用,浸出液中的钼质量浓度保持在该菌可以承受的范围内,再通过离子交换将滤出液中的钼交换吸附,交换处理的浸出液返回浸出反应器,从而使MBR中钼保持很低的质量浓度而实现细菌对矿物高效浸出。浸出条件为:温度为65℃,接种量为10%,矿浆质量浓度为100 g/L,浸出时间20 d。在浸出过程中,当所超滤和离子交换的浸出液体积为35%左右时,MBR的Ni和Mo的浸出率分别为70.70%和46.92%;当所超滤和离子交换的浸出液体积为18%左右时,MBR的Ni和Mo的浸出率分别为74.71%和50.97%;当所超滤和离子交换的浸出液体积为10%左右时,MBR的Ni和Mo的浸出率分别为79.53%和56.52%;而在相同条件下,柱浸镍和钼的浸出率则保持在75.59%和54.07%左右;可见,在浸出液的超滤和离子交换量较低(约10%)时,MBR中Ni和Mo浸出率比同条件下的柱浸浸出率高,达到了较好的浸出效果。  相似文献   

2.
硫酸盐还原菌处理镍磁黄铁矿硫酸浸出废水   总被引:1,自引:0,他引:1  
从高碑店污水处理厂的活性污泥中分离纯化得到硫酸盐还原菌(sulfate-reducing bacteria,SRB),并以稻壳作为吸附载体将其固定在连续上升流厌氧填充床反应器中,处理镍磁黄铁矿硫酸浸出废水中的金属离子,同时研究不同进样速率下SRB对Ni2+和Fe2+的去除率及出水pH的变化.实验结果表明:当废水中Ni2+和Fe2+初始质量浓度分别为190mg/L和110mg/L、进样速率为2 200 mL/(d.L)(水力停留时间630min)、pH为5.6时,出水中Ni2+和Fe2+质量浓度分别为0.4~1.0 mg/L和0.3 mg/L,去除率(质量分数)在99%以上;单位反应器容积对Ni2+和Fe2+的去除率分别可达418~684 mg/(d·L)和242~396mg/(d·L),且处理效率稳定;出水pH达到7.2,且稳定运行.随着进水速率的增加,Ni2+和Fe2+去除率逐渐降低,当进样速率增大到9 000 mL/(d·L)(水力停留时间130min)时,SRB对Fe2+的去除率在90%左右,而Ni2+的去除效率仅为75%;出水pH仅能达到6.4.  相似文献   

3.
对嗜热金属球菌(Metallosphaera sedula)浸出镍钼硫化矿进行了研究,以探求高效可持续的生物冶金方法. 结果表明:有菌组镍的浸出率均在91%以上,而无菌组为77.64%;以亚铁为能源培养的驯化菌组镍和钼的浸出率分别为96.56%和65.43%,非驯化菌组为94.37%和60.20%;起始pH为2时浸出组镍浸出率达97.55%,钼浸出率为62.97%;粒径小于0.048 mm和小于0.077 mm的浸样镍浸出率分别为97.58%和95.37%,钼浸出率分别为64.46%和59.54%;低矿浆质量浓度比高矿浆质量浓度的浸出率高,5 g·L-1矿浆镍和钼的浸出率分别达98.67%和81.87%;在无菌条件下,浸样添加0.5 g·L-1 Fe3+和对照组镍浸出率分别为91.19%和77.64%,钼浸出率为52.25%和50.19%;透析浸出率比非透析浸出率低;金属球菌浸出组比氧化亚铁硫杆菌浸出组的浸出率高,前者镍和钼浸出率分别为94.01%和64.74%,后者仅为67.77%和38.16%.  相似文献   

4.
由于高镍铜阳极泥是典型的难处理铜阳极泥,故以高镍铜阳极泥为原料,考察了温度、时间、液固比等因素对贱金属硒、铜和镍脱除效果的影响.研究结果表明,经过两次焙烧和浸出,可脱除995%的硒、997%的铜、9335%的镍和浸出9876%的银,且金从193g·t-1富集到1820g·t-1,增加了8~9倍.第一段焙烧和浸出条件:温度650℃、焙烧时间1h、酸泥质量比12、浸出温度55℃、浸出时间1h、液固质量比6.第二段焙烧和浸出条件:焙烧温度500℃、焙烧时间3h、酸泥质量比12、浸出温度55℃、液固质量比6、浸出时间1h.经过预处理之后,阳极泥的量减少为原来的1126%,大大提高了后续回收工序中的设备处理能力.  相似文献   

5.
黄铁矿强化生物浸出低品位磷矿   总被引:1,自引:0,他引:1  
进行了嗜酸氧化亚铁硫杆菌、嗜酸氧化硫硫杆菌与嗜酸氧化亚铁钩端螺旋菌的混合菌强化浸出低品位磷矿的实验研究.结果表明:由于试样中硫含量低,不利于该磷矿的生物浸出.提出了在浸矿体系中添加黄铁矿来强化浸出的措施.考察了细菌种类、磷矿与黄铁矿配比以及初始Fe2+质量浓度等参数对磷浸出率的影响.采用驯化菌浸出该磷矿,能获得最佳的浸出效果,其适宜的工艺参数为初始Fe2+质量浓度9g.L-1、磷矿与黄铁矿质量比1:2.5,经过20d浸出,磷的浸出率可达95%.  相似文献   

6.
研究细菌-矿物接触模式及利用透析袋将细菌和矿物隔离的非接触模式下嗜酸氧化亚铁硫杆菌对黄铜矿浸出溶解的影响,并对黄铜矿浸出过程表面钝化的原因进行分析。研究结果表明:在细菌-矿物接触模式下,黄铜矿的浸出行为包括细菌对黄铜矿表面硫的催化氧化及细菌氧化Fe2+生成的Fe3+对黄铜矿在于氧化溶解;在细菌-矿物非接触模式下,黄铜矿主要通过细菌氧化Fe2+生成的Fe3+氧化浸出;浸出体系电位是影响黄铜矿浸出速率的主要因素,且较高的电位更有利于黄铜矿的浸出。比较细菌-矿物接触模式和细菌-矿物非接触模式,细菌-矿物接触模式比非接触模式更有利于提高浸出体系电位及氧化消除黄铜矿表面生成的硫膜,因而促进了黄铜矿的浸出;易于在较高电位下生成的黄钾铁矾沉淀是导致这2种模式下黄铜矿表面钝化的主要原因。  相似文献   

7.
钒钛磁铁矿是我国主要提钒资源,广泛地分布于我国的攀枝花、承德地区。以钠化焙烧—水浸为代表的焙烧浸出工艺存在着污染环境、金属回收率不高的问题,目前正被逐步改进。据统计每生产1 t钛白粉就会排出20%的废酸8~10 t,而中国钛白行业年产废硫酸达到600万吨,直接排放将造成严重的环境污染。该报告围绕无焙烧直接加压酸浸提钒技术中的直接加压酸浸、浸出液中有价元素分离、新型加压连续浸出反应器研发、系统内物流循环与利用、浸出渣的综合利用、工艺放大等研究内容进行,通过相关研究取得以下成果:(1)研究并对比了无焙烧常压酸浸、无盐氧化焙烧常压酸浸、无焙烧氧压酸浸3种提钒过程的现象,结果表明:相比无焙烧常压酸浸、无盐氧化焙烧常压酸浸等2个工艺,明显地具有反应快速、高效的特点。(2)采用硫酸体系加压浸出四川攀枝花地区的转炉钒渣,矿物学表明,转炉钒渣中的主要物相为尖晶石相、钛铁矿相以及铁橄榄石。加压浸出过程中,铁橄榄石和尖晶石相逐渐分解,钒、铁被浸出进入浸出液,部分未反应的钛、硅相在浸出渣中富集。(3)对该技术核心加压酸浸过程进行了放大实验研究,对实验室研究结果进行了验证,放大实验研究结果表明:钒的浸出率随着初始酸度的增加而增加,随着液固比的增大而增大。在加压温度150℃,硫酸浓度300 g/L,搅拌转速300 rpm,浸出时间90 min,液固比8∶1的条件下,钒的浸出率可达到99.10%。(4)提钒酸浸液萃取最优工艺条件为:常温,还原剂用量20 g/L、浸出液p H=2.0、有机相组成为20%P2O4,5%TBP,75%磺化煤油、相比(O/A)=1∶1、震荡时间5 min,钒的一级萃取率达到74.49%,Fe的萃取率仅为1.92%。在最优条件下,进行4级错流萃取,钒的总萃取率可达97.89%。以硫酸为反萃液进行反萃,其最优工艺条件为:反萃时间t=4 min、反萃液浓度200 g/L、反萃相比(O/A)=1∶1时,钒的反萃率达到98%以上。  相似文献   

8.
石油加氢废催化剂中钨和镍的提取及镍的酸浸动力学   总被引:1,自引:0,他引:1  
研究了从石油加氢废催化剂中回收钨、镍的方法,通过正交试验考察了提取钨和镍的最佳工艺条件,并对镍的浸出过程动力学进行了研究.结果表明:当Na2CO3的用量是WO3理论量的6倍,在750℃下钠化焙烧4h,焙料在90℃下水浸2h,WO3的浸出率可达到95%以上;镍富集在浸出渣中,在硫酸质量分数为30%,固液比为1∶8,85℃下浸出4h,催化剂中镍的浸出率可达到98%以上;镍的浸出过程属于扩散控制模型,与扩散控制动力学方程式相吻合,浸出反应的表观活化能为15.95kJ/mol.  相似文献   

9.
研究了采用分步酸浸工艺处理高铁铝土矿新工艺中,低温酸浸过程主要工艺条件对矿物中铁、铝、钪等有价元素走向的影响,以及酸浸液后续萃取分离过程特点。结果表明:低温酸浸过程可实现矿物中的铁、铝分离,在浸出温度100℃、浸出时间60min、液固比20∶1、搅拌速率500rpm、粒度-0.055mm、硫酸浓度20%的低温酸浸条件下,矿物中的铁浸出率可达95%以上,钪的浸出率可达50%以上,铁、铝酸浸分离系数可达到80左右,浸出液可通过多级循环后萃取的方式提取其中的钪,在适宜的萃取条件下,钪的提取效率可达99%以上。  相似文献   

10.
金属硫化物矿物生物浸出过程中Fe~(3+)的作用   总被引:15,自引:0,他引:15  
研究了氧化亚铁硫杆菌(简称T.f菌)对金属硫化物矿物生物浸出过程中Fe3+的作用·结果表明,在浸出的初始阶段,Fe3+的化学氧化作用是主要的;但在整个金属浸出过程中,Fe3+的化学氧化作用是很有限的;Fe3+对T.f菌有一定的抑制作用,降低了它们对液相中Fe2+的氧化能力;Fe3+及其沉淀使细菌在固体矿物颗粒表面的吸附量减少,降低了吸附细菌的活性,从而影响了细菌的直接氧化浸出作用·  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号