首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 109 毫秒
1.
为了准确研究辣椒采摘机器人受不同作业场景影响的规律,利用获取的采摘目标信息构建基于改进YOLOv5s的辣椒采摘识别定位模型.基于光照强度、光照角度、枝叶遮挡和果实重叠等场景建立图像数据库,引入双向特征金字塔网络改进YOLOv5s的特征融合网络进行深层次特征提取,以增强网络的信息表达能力,提高检测精度.探讨不同场景对该模型检测精度P、检出率R和平均精度均值(mean average precision, MAP)的影响规律.结果表明:改进后YOLOv5s模型对辣椒的检测精度高达95.6%,较YOLOv4、YOLOv3、YOLOv2及Faster R-CNN模型分别提高了6.1%,9.3%,44.4%,8.2%;光照角度处于正面90°时的检测效果最佳,MAP达97.3%;模型在白天强光和傍晚弱光场景下的鲁棒性好,MAP值高于90%;模型在枝叶遮挡场景下比果实重叠时的检测精度高;辣椒距离相机坐标系的空间坐标测量值取0.2 m时的误差仅为1 mm,满足辣椒采摘定位精度需求.  相似文献   

2.
针对传统YOLOv3算法中存在检测框定位不精确的问题,提出了一种改进的YOLOv3算法用来重新估计检测框位置,提高智能汽车在雾霾交通环境下的定位精度。首先运用图像去雾算法对采集到的图片进行预处理,然后构造定位置信度替代分类置信度作为参考项来选择估计检测框位置,并改进非极大值抑制(NMS)算法,引入软化非极大值抑制(soft-NMS),最后使用加权平均的方式来更新坐标位置,以达到提高定位精度的目的。实验结果表明,先经过单尺度retinex去雾算法处理图片,再通过改进的YOLOv3算法进行车辆检测,与使用原始的YOLOv3算法进行检测相比平均精度均值mAP(mean average precision)提高了0.44%,在满足检测实时性的同时,能够检测到更多的目标,对检测车辆的定位也更加精确。  相似文献   

3.
针对SSD目标检测模型参数量大、运行速率低的问题,在SSD模型的基础上提出一种新的煤矸快速识别模型DSR-SSD.应用深度可分离卷积代替主干特征提取网络中的普通卷积,减少了模型的计算量;将RFB模块融入到SSD模型中,提高了模型的特征提取能力.经验证,DSR-SSD模型的识别速率为113.99帧/s、精确率为95.17%.将DSR-SSD与SSD,Faster-RCNN,YOLOv3三种模型对比,发现DSR-SSD模型与SSD模型相比,精确率提高了2.29%,识别速率提高了60.89%;同时,DSR-SSD模型的精确率比Faster-RCNN模型高2.86%,比YOLOv3模型高2.71%,识别速率分别是Faster-RCNN模型和YOLOv3模型的14.90倍和3.65倍,证明了DSR-SSD模型性能优越.  相似文献   

4.
针对传统YOLOv3(you only look once-v3)算法目标检测精度较低、收敛速度较慢等问题,提出了一种改进的YOLOv3算法,分别对主干网络和损失函数进行了改进。采用迁移和冻结相结合的训练方法,以提升目标检测的精确度和速度。基于改进的YOLOv3算法对西南某通航机场3种不同场景下的运动目标检测效果进行了对比分析。结果表明,改进的YOLOv3算法对正常天气场景下的场面运动目标检测效果要明显优于雾天和雨天场景,对飞机目标的检测效果明显优于车辆和行人目标;3类目标的检测精度、召回率、平均精度值(mean average precision,mAP)分别达到92.96%、80.51%、91.96%,GPU处理速度为74f/s,较传统YOLOv3算法和YOLOv4算法性能均有明显提升。  相似文献   

5.
针对YOLOv3(you only look once version 3)对中小目标检测效果不理想的问题,提出改进算法DX-YOLO(densely ResneXt with YOLOv3).首先对YOLOv3的特征提取网络Darknet-53进行改进,使用ResneXt残差模块替换原有残差模块,优化了卷积网络结构;受DenseNet的启发,在Darknet-53中引入密集连接,实现了特征重用,提高了提取特征的效率;根据数据集的特点,利用K-means算法对数据集进行维度聚类,获得合适的预选框.在行人车辆数据集Udacity上进行实验,结果表明:DX-YOLO算法与YOLOv3相比,平均准确率(mean average precision,mAP)提升了3.42%;特别地,在中等目标和小目标上的平均精度(average precision,AP)分别提升了2.74%和5.98%.  相似文献   

6.
针对复杂交通场景下密集小目标居多、目标尺寸差异大、目标间遮挡严重的问题,提出了一种基于YOLOv4框架的复杂交通场景下的目标检测算法。首先,构造多尺度特征融合提取模块作为主干网络特征提取模块,充分提取不同尺度目标特征信息,同时引入轻量化Ghost模块对主干网络特征进行维度调整;其次,将卷积模块与自注意力机制融合,构造倒残差自注意力模块应用到主干网络深层,深层网络在充分提取局部特征信息基础上获得了全局感知;然后,构造轻量级混合注意力模块,抑制背景噪声,增强密集小目标检测能力;最后,在Udacity数据集上进行实验,检测精度达到了84.41%,相比较YOLOv4, mAP(mean average precision)提高了3.07%,对1 920×1 200分辨率图像的检测FPS(frames per second)可达到49,提高了22.5%,精度提升的前提下实现了较好的实时性,更适用于复杂交通场景下的目标检测任务。  相似文献   

7.
基于原有YOLOv3模型占用存储空间较大,所需初始化数据集样本和参数较多的问题,本文提出了一种基于YOLOv3的深度学习目标检测压缩模型YOLOv3-ADS.该模型使用拼接、叠加等方法对较少的有代表性的初始数据集进行数据增强,引入了DIoU损失函数,提升了目标检测的准确度.最后,通过稀疏训练和剪枝率阈值设置实现了YOLOv3-ADS模型的压缩处理,减少了模型实现过程中的冗余节点、参数数量和所需存储空间.实验结果表明,提出的YOLOv3-ADS压缩模型与已有的YOLOv3模型相比,平均精度值(mAP值)提升了约30%,由0.6418提升至0.8368,需设置参数量下降了96.6%,由原来的63.0MB降至2.2MB,在保证了较高目标检测准确率的同时,YOLOv3-ADS模型所需存储空间下降了96.5%,由252MB降至仅需8.81MB.  相似文献   

8.
胃镜检查是发现胃息肉的主要方法。传统的人工检查方式存在准确率低,易漏诊、误诊的情况。本文提出了一种基于深度学习的YOLOv5-SE胃息肉检测网络。该网络在目标检测算法YOLOv5的基础上进行了改进,引入注意力机制,将SE Block加入到主干网络的最后一层,增强网络的特征提取能力。改进后的YOLOv5-SE胃息肉检测网络的平均精度均值(mAP)达到了94.5%,相比原网络提高了3.1%,推理速度达到67fps,在满足实时性要求下较好地完成了胃息肉检测的要求。YOLOv5-SE胃息肉检测网络具有在实时性、自动检测的精度和速度等方面有一定提升,对促进胃息肉的自动检测有重要意义。  相似文献   

9.
针对目标检测模型过大且计算复杂而导致其无法应用于无图形处理器嵌入式终端的问题,通过改进YOLO算法,提出一种基于深度学习的水面目标检测模型压缩方法.采用带有深度可分离卷积和轻量级注意力模型的改进网络替代特征提取网络DarkNet,通过多尺度特征融合进行模型压缩,引入k-means++算法与Mish激活函数,保证模型压缩后的准确度.试验结果表明,YOLOv3-MobileNetV3网络模型较YOLOv3网络模型的参数量减少61.35%,模型大小减少144 MB,模型平均精度均值较YOLOv3-MobileNetV1网络模型提升5.55%,满足嵌入式设备水面目标检测实时性和准确性的要求.  相似文献   

10.
叶涛  赵宗扬  柴兴华  张俊 《科学技术与工程》2021,21(33):14245-14250
针对“黑飞”无人机侵犯公民隐私、危害个人及公共安全,现有的无人机检测算法难以平衡检测速度和精度且对小目标的检测精度较低等不足,本文在YOLOv3的基础上进行改进,提出MS-Net (Multi-Scale Object Detection Network) 对低空中的无人机进行快速高效地检测,为实现后续的防护压制提供依据。针对锚点框,通过 K-means聚类方法得出更准确预测目标区域的位置。在特征提取部分,使用SSP (Spatial Pyramid Pooling) 提取更丰富的特征信息,提升分类精度。在检测部分,提出ESE (Enhanced Sequeeze and Excitation) 通道注意力机制在基本不影响检测速度的同时实现更加精确的多尺度目标检测。实验结果表明:该方法在由无人机、风筝、鸟等组成的数据集上的检测速度为51FPS,平均准确率(mean average precision, mAP)为91.39%,比 YOLOv3 网络提高了6.42%;特别地,在无人机目标上的平均精度(average precision, AP)提升了7.42%。  相似文献   

11.
针对基于目标检测方法的桥梁表观病害检测存在检测精度低、误检率和漏检率高的问题,提出一种改进YOLOv3的高准确率桥梁表观病害检测识别方法。为实现局部特征和全局特征有效融合,在YOLOv3的检测层中添加固定分块大小的池化模块,并在YOLOv3的特征提取网络中引入了DenseNet密集型连接网络结构以增强桥梁病害特征在网络中的传播和利用效率,提高检测效率,采用数据增强技术来扩充样本图像以解决现有桥梁病害数据集样本数量不足的问题。实验结果表明,改进后的YOLOv3在桥梁表观病害检测上的平均准确率比原YOLOv3提高了3.0%,且模型训练时间减少了33.2%,同时降低了对桥梁表观病害检测的误检率和漏检率。  相似文献   

12.
YOLOv7是目前目标检测任务中性能较优的模型,但在处理遥感影像中的道路交叉口时,出现目标背景复杂、先验框定位误差以及模型训练参数量增多的问题。本文针对复杂场景的道路交叉口提出一种结合归一化高斯Wasserstein距离与轻量级YOLOv7的遥感影像道路交叉口检测模型。首先,使用归一化高斯Wasserstein距离与CIOU进行先验框定位损失函数的改进,以提高网络模型对于目标尺寸的鲁棒性;其次,在加强网络特征提取模块中加入三维注意力机制,实现网络处理的特征优化;最后,在主干特征提取网络与加强特征提取网络中加入改进的FasterNet模块,提升网络模型的训练速度,减少了模型训练的参数。实验结果表明,改进后的 YOLOv7 网络模型相比原网络模型,漏检测情况得到明显改善,P、R、AP及F1值分别提升了6.2%,4.9%,6.7%,6.5%,对道路交叉口的检测效果优于原网络模型。其成果对不同环境的影像具有较强适应能力,为道路交叉口检测的发展提供了参考。  相似文献   

13.
实时的交通场景目标检测是实现电子监控、自动驾驶等功能的先决条件.针对现有的目标检测算法检测效率不高,以及大多数轻量化目标检测算法模型精度较低,容易误检、漏检目标的问题,本文通过改进YOLOv5目标检测算法来进行模型训练,再使用伪标签策略对训练过程进行优化,然后在KITTI交通目标数据集上将标签合并为3类,对训练出的模型进行测试.实验结果表明,改进的YOLOv5最终模型在该所有类别上的mAP达到了92.5%,对比原YOLOv5训练的模型提高了3%.最后将训练的模型部署到Jetson Nano嵌入式平台上进行推理测试,并通过TensorRT加速推理,测得平均每帧图像的推理时间为77ms,可以实现实时检测的目标.  相似文献   

14.
为了提高视觉导盲仪障碍物检测系统的便携性,建立了基于Android平台的障碍物检测系统。对该系统所采用的Android平台采集双目图像、路面平面提取和障碍物检测等算法进行研究。首先,根据Android平台的USB HOST API介绍了Android平台以非ROOT的方式采集双目图像数据;然后,提取并匹配双目图像的特征点得到稀疏的三维点云,在三维点云中用随机抽样一致性算法(random sample consensus,RANSAC)来提取路面平面;最后,在利用双目图像路面平面单应性来区分路面与障碍物的基础上,说明了采用半全局块匹配(semi-global block matching,SGBM)进行障碍物检测的算法。实验结果表明:系统5 m以内的障碍物检测准确率达到90%;检测时间达到1 s/帧。完全满足视觉导盲仪障碍物检测系统的检测准确率高、实时性高、易便携等要求。  相似文献   

15.
针对复杂场景下交通标志检测存在精度低、检测速度慢等问题,提出一种基于YOLOv3改进的S-YOLO交通标志算法。首先,合并批归一化层到卷积层,以提升模型前向推理速度;其次,采用二分K-means聚类算法,确定适合交通标志的先验框;然后引入空间金字塔池化模块,提取特征图深度特征;最后引入CIoU回归损失函数,提升模型检测精度。实验结果表明,在重制的CTSDB交通标志数据集下,所提算法与YOLOv3相比,平均准确率和检测速度分别提升了4.26%和15.19%,同时相较YOLOv4以及其他算法对交通标志识别有更优的精度和速度,具有良好的鲁棒性,满足复杂场景高效实时检测。  相似文献   

16.
由于高分辨率遥感图像存在目标排列密集、尺寸差别大等情况,传统算法难以准确地对其进行目标检测。在YOLOv3算法的基础上,提出一种改进的高分辨率遥感图像目标检测算法(remote sensing-YOLO,RS-YOLO)。利用K-means聚类算法对数据集进行聚类,重新设计适合遥感图像的先验框; 引入高斯模型计算预测框的不确定度,以提高网络对预测框坐标的准确度; 使用弱化的非极大值抑制算法(soft non-aximum suppression,Soft-NMS)对预测框进行处理,增强算法对密集排列目标的检测能力。实验结果表明,改进后的算法能够对高分辨率遥感图像进行有效的目标检测,以NWPU VHR-10数据集为例,RS-YOLO的平均检测精度达到了87.97%。  相似文献   

17.
为了预防新冠肺炎的传播,在佩戴口罩的同时,保持一定的社交安全距离是必要的。为解决现有的目标检测算法在社交距离检测中无法同时满足检测的实时性、准确性以及在复杂场景中存在遮挡、小尺度目标等问题,提出基于YOLOv3的改进算法DPPY(Dilated Pyramid-Pooling with YOLOv3)。首先使用空洞卷积参与到YOLOv3的核心图像处理结构中,然后引入密集型连接网络进一步融合不同层之间的连接,并且在这基础上还模仿了空间金字塔结构处理输入数据的尺寸问题,最后将这些处理结果一起与待追踪物体与彼此间的前后位置进行更好的关联并选用卡尔曼滤波器这个工具来更好地处理。若行人彼此间靠的过于紧密,则标红发出警报,以便更好地提醒相关人员注意。结果表明:与传统的YOLOv3算法相比,DPPY算法检测速度更快,检测精度更高。检测速度达到了34帧/s,平均准确率(Average Precision, AP)提高了9.1 %,并且在大、中、小目标检测中平均准确率均值(mean Average Precision, mAP)分别提高了7.8 %、8.2 %、8.9 %。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号