首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
SnCo alloy nanowires were successfully electrodeposited from SnCl2-CoCl2-1-ethyl-3-methylimidazolium chloride (EMIC) ionic liquid without a template. The nanowires were obtained from the molar ratio of 5:40:60 for SnCl2:CoCl2:EMIC at -0.55 V and showed a minimum diameter of about 50 nm and lengths of over 20 μm. The as-fabricated SnCo nanowires were about 70 nm in diameter and featured a Sn/Co weight ratio of 3.85:1, when used as an anode for a Li-ion battery, they presented respective specific capacities of 687 and 678 mAh·g-1 after the first charge and discharge cycle and maintained capacities of about 654 mAh·g-1 after 60 cycles and 539 mAh·g-1 after 80 cycles at a current density of 300 mA·g-1. Both the nanowire structure and presence of elemental Co helped buffer large volume changes in the Sn anode during charging and discharging to a certain extent, thereby improving the cycling performance of the Sn anode.  相似文献   

2.
碳基负极材料比容量低,无法满足高能量密度电池的需求.为了进一步寻找高容量长循环寿命的电池负极材料,采用水热反应法制备了自支撑CoMoO4负极,通过X射线衍射(XRD)和扫描电子显微镜(SEM)对材料的结构、形貌进行表征,利用循环伏安法和恒电流充/放电等技术对比研究了材料在锂/钠离子电池中的电化学性能.结果表明,CoMoO4负极在锂离子电池中的首次可逆比容量为1 403.6 mAh/g,首次库伦效率为146.5%,在100 mA/g电流密度下经50次循环后仍然高达793.6 mAh/g;而CoMoO4负极在钠离子电池中首次可逆比容量仅为314.2 mAh/g,但经50次循环后容量保持率仍有76.4 %.该自支撑负极无需导电剂和粘结剂,电极材料与泡沫镍结合力强,具有优异的循环稳定性.  相似文献   

3.
Zr~(4+) and F~– co-doped TiO_2 with the formula of Ti_(0.97)Zr_(0.03)O_(1.98)F_(0.02) was facilely synthesized by a sol-gel template route.The crystal structure,morphology,composition,surface area,and conductivity were characterized by Raman spectroscopy,energy-dispersive X-ray analysis,scanning electron microscopy,Brunauer-Emmett-Teller measurements,X-ray photoelectron spectroscopy,and electrochemical impedance spectroscopy.The results demonstrate that Zr~(4+)and F~–homogeneously incorporated into TiO_2,forming solid solution with an anatase structure.Ti_(0.97)Zr_(0.03)O_(1.98)F_(0.02)shows outstanding electrochemical properties as Li-ion battery anode in comparison with Ti_(0.97)Zr_(0.03)O_2.In particular,upon 35-fold cycling at 1C-rate Zr~(4+)/F~–co-doped TiO_2delivers a reversible capacity of 163 mAh g~(–1),whereas Zr~(4+)-doped TiO_2gives only 34 mA h g~(–1).Additionally,Zr~(4+)/F~–co-doped TiO_2retains a capacity of 138 mA h g~(–1)during cycling even at 10 C.The enhance performance originates from improved conductivity of Zr~(4+)/F~–co-doped TiO_2material through generation of Ti~(3+)(serving as electron donors)into the crystal lattice and,possibly,due to F-doping blocked the anode surface from attack of HF formed as electrolyte decomposition product.  相似文献   

4.
A facile high-energy ball-milling method was developed to synthesize SnS_2-carbon(SnS_2/C-x(x = 40, 50, 60 wt%)) nanocomposites. The results showed that as anode materials for lithium-ion batteries(LIBs), the SnS_2-C nanocomposites exhibited high discharge capacity and excellent cycling stability. For the optimized SnS_2/C-50 wt% nanocomposite, a discharge capacity as high as 700 mA h g~(-1) and the initial coulombic efficiency of 80.8% were achieved at a current density of 100 mA g~(-1). The unique structure with SnS_2 nanoparticles(NPs)embedded into carbon network provided abundant Li-ion storage sites, high electronic conductivity and fast ion diffusion. The ball-milled synthesis is applicable for large-scale preparation of new sulfide-based anode materials with good performance for LIBs.  相似文献   

5.
Iron sulfides are promising anode materials for lithium ion batteries(LIBs) owe to their high theoretical capacity and low cost. However, unsatisfactory electronic conductivity, dissolution of polysulfides, and severe agglomeration during the cycling process limit their applications. To solve these issues, a ternary FeS_2/Fe_7S_8@nitrogensulfur co-doping reduced graphene oxide hybrid(FeS_2/Fe_7S_8@NSG) was designed and synthesized through a facile hydrolysis-sulfurization strategy, in which the FeS_2/Fe_7S_8 could be well distributed upon the NSG. The NSG was believed to buffer the volume change and augment the electronic conductivity of the electrode, and the nanodimensional FeS_2/Fe_7S_8 particles with a diameter of 50–100 nm could shorten the ion-diffusion paths during the lithiation/delithiation process. Benefiting from synergistic contributions from nano-dimensional FeS_2/Fe_7S_8 and flexible NSG, the FeS_2/Fe_7S_8@NSG hybrid displayed a high initial capacity of ~1068 m Ah g~(-1) at 200 mA g~(-1),good cycling stability(~898 mAh g~(-1) at 500 mA g~(-1) after 200 cycles) and high-rate performance. Further kinetic analysis corroborated that the introduction of NSG boosted the capacitive behavior. Above results indicate the potential applications of FeS_2/Fe_7S_8@NSG hybrid in LIBs with low-cost and high energy density.  相似文献   

6.
Ultrafine nano-scale Cu2Sb alloy confined in a three-dimensional porous carbon was synthesized using NaCl template-assisted vacuum freeze-drying followed by high-temperature sintering and was evaluated as an anode for sodium-ion batteries (SIBs) and potassium-ion batteries (PIBs). The alloy exerts excellent cycling durability (the capacity can be maintained at 328.3 mA·h·g?1 after 100 cycles for SIBs and 260 mA·h·g?1 for PIBs) and rate capability (199 mA·h·g?1 at 5 A·g?1 for SIBs and 148 mA·h·g?1 at 5 A·g?1 for PIBs) because of the smooth electron transport path, fast Na/K ion diffusion rate, and restricted volume changes from the synergistic effect of three-dimensional porous carbon networks and the ultrafine bimetallic nanoalloy. This study provides an ingenious design route and a simple preparation method toward exploring a high-property electrode for K-ion and Na-ion batteries, and it also introduces broad application prospects for other electrochemical applications.  相似文献   

7.
Co_3O_4 is a promising high-performance anode for lithium ion batteries(LIBs), but suffers from unsatisfied cyclability originating duo to low electrical conductivity and large volume expansion during charge and discharge process. Herein, we successfully constructed the Co_3O_4 nanoparticles embedded into graphene nanoscrolls(GNSs) as advanced anode for high-performance LIBs with large capacity and exceptional cyclability. The onedimensional(1 D) Co_3O_4/GNSs were synthesized via liquid nitrogen cold quenching of large-size graphene oxide nanosheets and sodium citrate(SC) modified Co_3O_4 nanoparticles, followed by freeze drying and annealing at400 °C for 2 h in nitrogen atmosphere. Benefiting from the interconnected porous network constructed by 1 D Co_3O_4/GNSs for fast electron transfer and rapid ion diffusion, and wrinkled graphene shell for significantly alleviating the huge volume expansion of Co_3O_4 during lithiation and delithiation. The resultant Co_3O_4/GNSs exhibited ultrahigh reversible capacity of 1200 mAh g~(-1) at 0.1 C, outperforming most reported Co_3O_4 anodes.Moreover, they showed high rate capability of 600 m Ah g-1 at 5 C, and outstanding cycling stability with a high capacity retention of 90% after 500 cycles. Therefore, this developed strategy could be extended as an universal and scalable approach for intergrating various metal oxide materials into GNSs for energy storage and conversion applications.  相似文献   

8.
Lithium metal anode with high theoretical capacity is considered to be one of the most potential anode materials of the next generation. However, the growth of lithium dendrite seriously affects the application of lithium metal anode and the development of lithium metal batteries (LMBs). Herein, an ultrathin Li3N film modified separator to homogenize the lithium ions and protect the lithium metal anode was reported. Due to the intrinsic properties of Li3N, the functional separator possessed good thermal stability, mechanical properties and electrolyte wettability, and the homogenization of the lithium ion was realized without increasing the interface impedance. With this functional separator, the Li/Li symmetrical cell could achieve a long cycle with low overpotential for 1000 ​h at a current density of 1 ​mA ​cm−2. Furthermore, when the full battery was assembled with LiFePO4 and the discharge capacity could be maintained at 151 mAh g−1 after 400 cycles at 1 ​C. In addition, the full battery also showed good rate performance, and provided a high discharge capacity of 114 mAh g−1 at 5 ​C.  相似文献   

9.
Mesoporous carbons were synthesized using thermoplastic phenolic resin (PF) as carbonaceous precursor and magnesium citrate as template precursor. Pore structure was determined as ink-bottle-like geometry through TEM, N2 adsorption analysis combined with TG curves. The porous carbons prepared were then applied as electrode material for electric double-layer capacitors. The capacitor performance was examined in 30 wt% KOH aqueous solution by cyclic voltammetry and galvanostatic charge/discharge measurements. The carbon prepared with MgO/PF mass ratio of 8/2 had a BET surface area of 1920 m2 g?1 and exhibited a capacitance of 220 F g?1 at a current density of 50 mA g?1. Besides, the carbon with the ratio of 4/6 had the optimize proportion of mesopores, which ensures its good rate performance that up to 98.3%, expressed as the ratio of the capacitance measured at 1000 mA g?1 against that at 50 mA g?1.  相似文献   

10.
To promote substantially the performances of red phosphorous (P) anode for lithium and sodium-ion batteries, a simple plasma assisted milling (P-milling) method was used to in-situ synthesize SeP2/C composite. The results showed that the amorphous SeP2/C composite exhibits the excellent lithium and sodium storage performances duo to the small nano-granules size and complete combination of selenium (Se) and phosphorous (P) to generate Se–P alloy phase. It was observed that inside the granules of SeP2/C composite the nanometer size of the SeP2 particles ensured the fast kinetics for Li+ and Na+ ​transfer, and the amorphous carbon wrapping the SeP2 particles relieved volume expansion during lithium/sodium storage processes and enhances electric conductivity. Therefore, the SeP2/C electrode retained reversible capacities of 700 ​mA ​h ​g−1 at 2 ​A ​g−1 after 500 cycles and 400 ​mA ​h ​g−1 at 0.5 ​A ​g−1 after 400 cycles as anode for LIBs and SIBs, respectively. The result proves that the amorphous SeP2/C composite can be a new type of anode material with great potential for lithium and sodium-ion batteries.  相似文献   

11.
A facile one-step strategy involving the reaction of antimony chloride with thioacetamide at room temperature is successfully developed for the synthesis of strongly coupled amorphous Sb2S3 spheres and carbon nanotubes (CNTs). Benefiting from the unique amorphous structure and its strongly coupled effect with the conductive network of CNTs, this hybrid electrode (Sb2S3@CNTs) exhibits remarkable sodium and lithium storage properties with high capacity, good cyclability, and prominent rate capability. For sodium storage, a high capacity of 814 mAh·g?1 at 50 mA·g?1 is delivered by the electrode, and a capacity of 732 mAh·g?1 can still be obtained after 110 cycles. Even up to 2000 mA·g?1, a specific capacity of 584 mAh·g?1 can be achieved. For lithium storage, the electrode exhibits high capacities of 1136 and 704 mAh·g?1 at 100 and 2000 mA·g?1, respectively. Moreover, the cell holds a capacity of 1104 mAh·g?1 under 100 mA·g?1 over 110 cycles. Simple preparation and remarkable electrochemical properties make the Sb2S3@CNTs electrode a promising anode for both sodium-ion (SIBs) and lithium-ion batteries (LIBs).  相似文献   

12.
Sodium-ion batteries (SIBs) have been recently considered as an intriguing candidate for next-generation battery systems with their advantages in large-scale energy storage applications. However, the design of electrode materials of SIBs still suffers from severe volume expansion and low capacity caused by the larger ion radius, high re-dox potential and heavy atom weight of Na. Organic electrode materials with structural flexibility have attracted great attention recently for their potential in alleviating volume expansion. However, most organic electrode materials suffer from dissolution in electrolytes and consequent capacity fading during the long-term cycling process. In this work, a method coordinating with Co2+ was applied to solve the shuttle effect of H4salphdc (N, N’-phenylene-bis-(salicylideneimine) dicarboxylic acid). By virtue of the Co2+ coordination, the Co(H2salphdc) electrode delivered a desirable discharge capacity of 123 mAh g?1 after 1500 cycles at the current density of 200 ?mA ?g?1, while the H4salphdc electrode exhibited severe capacity fading. Such excellent electrochemical performance can be credited to the Co2+ coordination repressing the electrode dissolution and improving the structure stability.  相似文献   

13.
Highly uniform and tight adhering of Fe3O4 particles on carbon fiber film (Fe3O4/CFF) is achieved through a simple in-situ thermal oxidation method. Particularly, 3D CFF with interconnected structure can shorten transfer path and buffer the volume expansion during charge-discharge cycling. Herein, the obtained Fe3O4/CFF anode exhibits a stable cycling performance and excellent high rate capability. The cell delivers a reversible capacity of 1 711 mAh·g–1 at a current density of 100 mA·g–1 after 100 cycles. Even at a high rate density of 2 A·g–1, the specific capacity also can maintain 1 034 mAh·g–1 after 100 cycles. The simplified fabrication is featured with low-cost and this binder-free perspective holds great potential in mass-production of high-performance metal oxide electrochemical devices.  相似文献   

14.
Well-crystallized FeSbO 4 nanorods with rutile-like structure are synthesized through a solid-state reaction and used as cathode material of Li-ion battery for the first time.The obtained nanorods can react with 11 Li-ions per FeSbO 4 unit with a specific discharge capacity of 1 100 1 mAh g between 0.1 and 2.0 V.Three discharge plateaus can be observed during the fully discharging process,but the reversible reaction with 1 Li occurs between 1.5 V and 4.5 V vs.Li + /Li,and the reversible capacity is only 50-80 1 mAh g.FeSbO 4 nanorods have a stable cyclic performance between 1.5 V and 4.5 V and it can be used as cathode material for rechargeable Li-ion battery.  相似文献   

15.
As an anode material in lithium ion battery, the Sn-Co/C composite electrode materials have been successfully synthesized by hydrothermal and solgel methods, respectively. The resultant composites were mainly composed of Snbased oxides, nanometer Sn-Co alloy and carbon. Carbon and Co, acting as buffer materials, can accommodate to the large volume change of active Sn during the discharge-charge process, thus improving the cycling stability. Although charge/discharge curves revealed the excellent cycle performance for samples synthesized by both methods, composites obtained by the sol-gel showed a better dispersion effect of nanoparticles on the carbon matrix and possessed much more improved stable capacity with 624.9 mAh g-1 over 100 cycles and that by hydrothermal method only exhibited ~299.3 mAh g-1. Therefore, the Sn-Co/C composites obtained by solgel synthesis method could be a perfect candidate for anode material of Liion storage battery.  相似文献   

16.
Recently, metal oxides as high capacity anode materials had been investigated for lithium ion batteries.However, the fast capacity fading upon cycling leaded poor durability, which hindered their application as higher energy density of lithium ion battery. In this paper, a nanostructured nanocomposite with graphene supported CoFe_2O_4 nanoparticles(NPs) was prepared via simple hydrothermal reaction. The uniform CoFe_2O_4 NPs were anchored on graphene sheets, which brought a good performance on cyclability. Combined with the optimization of graphene content, the anode delivered a better capacity retention of 944 m A h g~(-1)over 50 cycles at current density of 100 m A g~(-1)and the good reversible capacity as 990 m A h g~(-1)when the rate returned from 5 A g~(-1)to 0.1 A g~(-1)after 60 cycles. The present work provided a desired structure for conversion anode materials or other electrode materials of large volume change.  相似文献   

17.
Li_2MnSiO_4-based cathode materials possess reasonable work potentials and high theoretical capacities,while the practical energy/power densities are constrained by their inferior kinetics of Li~+ diffusion.In this work,the Pmn2_1-structure Li_2Fe_xMn_(1-x)SiO_4/C materials were synthesized via a solvothermal method and evaluated as Liion cathode materials,with notable morphological evolutions and tunable crystallographic habits observed after solvothermal process.The Li_2Fe_(0.33)Mn_(0.67)SiO_4/C material delivers an initial reversible capacity of 250.2mAh g~(-1)at 0.1 C(~1.51 Li~+insertion/extraction,1 C=166 mA g~(-1)),excellent high-rate capability(52.2 mAh g~(-1)at 5 C),and good long-term cyclability(64.6%after 196 cycles at 2 C).The enhanced electrochemical properties are attributed to the boosted ion/electron transports induced by preferred morphological and structural characteristics of Li_2Fe_(0.33)Mn_(0.67)SiO_4/C.  相似文献   

18.
通过简单的固相法和液相法,分别制备出石墨相氮化碳(g-C3N4)表面改性的商品化LiCoO2复合材料,采用扫描电子显微镜观察改性后的材料,发现g-C3N4都均匀地包裹在LiCoO2表面。两种g-C3N4-LiCoO2复合材料被用作锂离子电池的正极材料,电化学测试结果显示,固相法制得的g-C3N4-LiCoO2复合材料在0.2 C的倍率下充放电测试,首次比容量达167 mA·h·g-1,循环80次后,比容量仍达132 mA·h·g-1,高于未经g-C3N4包裹的纯LiCoO2(98 mA·h·g-1);液相法制得的Y-C3N4-LiCoO2复合材料循环稳定性明显优于同类材料,循环80次后容量保持率均在95%以上。试验证实,g-C3N4表面改性的策略具有一定的实用价值,改性后,材料优异的电化学性能归因于g-C3N4的包裹处理,这不仅增强了固体电解质界面(SEI)的稳定性,也抑制了锂离子嵌入/脱出电极材料时引起LiCoO2体积的变化。  相似文献   

19.
在超声环境下,采用强氧化法将多壁碳纳米管(MWCNTs)切割成长径比小于5的超短碳纳米管(SSCNTs),通过简单的湿化学法将其与MnOx纳米颗粒(MnxNPs)植入还原性氧化石墨烯片层中,热处理后,形成GS-SSCNTs-MnNPs纳米复合材料.通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)和X-射线衍射(XRD)等制备材料的形貌结构,采用循环伏安和恒流充放电研究其锂离子电池负极性能.结果表明:GS-SSCNTs-MnNPs纳米复合材料在180 mA?g-1电流密度下具有高达1 100 mA?h?g-1的可逆容量,且表现出优异的功率和循环稳定性能,循环100圈之后,仍具有高达837 mA?h?g-1的可逆容量(1 440 mA?g-1).  相似文献   

20.
A high-energy-density Li-ion battery with excellent rate capability and long cycle life was fabricated with a Ni-rich layered LiNi0.8Mn0.1Co0.1O2 cathode and SiO-C composite anode. The LiNi0.8Mn0.1Co0.1O2 and SiO-C exhibited excellent electrochemical performance in both half and full cells. Specifically, when integrated into a full cell configuration, a high energy density (280 Wh·kg-1) with excellent rate capability and long cycle life was attained. At 0.5C, the full cell retained 80% of its initial capacity after 200 charge/discharge cycles, and 60% after 600 cycles, indicating robust structural tolerance for the repeated insertion/extraction of Li+ ions. The rate performance showed that, at high rate of 1C and 2C, 96.8% and 93% of the initial capacity were retained, respectively. The results demonstrate strong potential for the development of high energy density Li-ion batteries for practical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号