首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An isotropic (+U) and anisotropic [+(U-J)] corrected Density Functional Theory study for bulk hematite (α-Fe_2O_3) was carried out,and several competing terminations of its (0001) surface modeled via slabs of increasing thickness from twelve to thirty-six Fe-layers.In spite of small quantitative differences,the use of either U or (U-J)corrections showed not to qualitatively affect the results of the simulations both for bulkα-Fe_2O_3 and the lowestenergyα-Fe_2O_3(0001) surface studied,regardless of the thickness of the slab used.The energy favored antiferromagnetic ordering of bulkα-Fe_2O_3 was preserved in the relaxed slabs,with the largest surface-induced effects limited to the outermost three Fe-layers in the slabs.Mixed O-and Fe-terminations were found to be energetically favored and insulating.Conversely,fully O-or Fe-terminated surfaces were calculated to be energetically disfavored and metallic.Finally,the role of Fe-or O-termination for the semiconducting or metallic nature as well as absolute band alignment ofα-Fe_2O_3 (0001) surfaces was analyzed and discussed with respect to the challenges in enhancing the activity ofα-Fe_2O_3 samples as photo-electrode for water splitting.  相似文献   

2.
Mineralogical alternation of thermally treated siderite in air atmosphere has been systematically analyzed by Mössbauer effects. It was preliminarily estimated from the area of subspectra that 4%, 39% and 62% of magnetite were formed at 410 °C, 490 °C and 510 °C respectively. After being incrementally heated at 530 °C the spectra consist of two sextets of Fe3O4. Sextet of γ-Fe2O3 with hyperfine field of 50T was observed at 550 °C. Spectra at 580 °C consisted of two sextets with hyperfine fields caused by γ-Fe2O3 and α-Fe2O3. Fe3O4 disappeared and the amount of γ-Fe2O3 decreased, while the quantity of α-Fe2O3 increased to 34% and 77% at 640 °C and 690 °C, respectively. During the early stage of decomposition and oxidation, FeO was probably produced but quickly oxidized to magnetite and unidentified in our experiment. These results, in good agreement with the X-ray diffraction analyses and microscopic observation, provide an interpretation to anomalous magnetic property changes of siderite-bearing rock samples.  相似文献   

3.
A method for the two-step synthesis of magnetic composites with a γ-Fe2O3 core, silica inner layer and numerous gold nanoparticles supported on the surface of the silica (γ-Fe2O3/SiO2/Au) is described. First, thiol-functionalized γ-Fe2O3/SiO2 composites and gold colloids are prepared by modifying γ-Fe2O3/SiO2 composites with mercaptosilane and reduction of Au3+ to Au0 with citrate, respectively. Gold nanoparticles are then assembled on the surface of the thiol-functionalized γ-Fe2O3/SiO2 composites to form γFe2O3/SiO2/Au composites. The structure of the composite particles is confirmed by transmission electronic microscopy and powder X-ray diffraction. Immobilization studies with bovine serum albumin (BSA) demonstrate that the γ-Fe2O3/SiO2/Au composites can be used to immobilize BSA, making them useful for biomedical and biological applications.  相似文献   

4.
α-Fe2O3 -supported molybdena catalysts have been prepared by heating a mixture of MoO3 and α-Fe2O3. XRD, XPS, LRS, TG-DTA and Mössbauer spectroscopy were used to characterize the interactions between MoO3 and α-Fe2O3. The dispersion capacity of MoO3 on the surface of α-Fe2O3 determined by XRD and XPS was 0.8 mmol/100m2 α-Fe2O3 in the samples calcined at 420 . For the sample with low MoO3 loading, LRS and FT-IR results showed that Mo6+ ions were located in the tetrahedral vacant sites on the surface of α-Fe2O3, signed as Mo- . The amount of Mo-II species, formed by Mo6+ ions incorporated into the octahedral vacant sites, increased with the MoO3 loading. Based on the assumption that the (001) plane of α-Fe2O3 is preferentially exposed, almost all the Mo6+ ions of the dispersed molybdena species existed at the surface octahedral sites for the sample with MoO3 loading close or beyond the dispersion capacity, and formed the Mo-II species. In this case, the capping O2- ions linking with the incorporated Mo6+ ions formed a surface epitaxial structure, which was in good agreement with the results predicted by the incorporation model proposed previously. XRD and Mössbauer spectroscopy of the MoO3 α-Fe2O3 samples calcined at different temperatures showed that the calcination temperature could strongly influence the interaction extent: ( i) at 420 , MoO3 dispersed on the surface of α-Fe2O3 and formed surface Mo species; (ii ) at 500 , MoO3 reacted with the bulk of α-Fe2O3 and formed Fe2(MoO4)3 compound.  相似文献   

5.
Fe5O7(OH)·4H2O ferrihydrite is a low-crystallinity antiferromagnetic material. γ-Fe2O3 (maghemite) magnetic nanoparticles were prepared from a ferrihydrite precursor, by chemically induced transformation in FeCl2/NaOH solution. The magnetization, morphology, crystal structure and chemical composition of the products were determined by vibrating sample magnetometry, transmission electron microscopy, X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy (XPS). Ferrihydrite underwent aggregation growth and transformed into α-FeO(OH) (goethite) particles, which subsequently transformed into γ-Fe2O3 nanoparticles, that became coated with NaCl. The γ-Fe2O3 particles had a flake-like morphology, when prepared from 0.01 mol/L FeCl2 and a FeCl2:NaOH molar ratio of 0.4. The γ-Fe2O3 particles were more spherical, when prepared from a FeCl2:NaOH molar ratio of 0.6. The Fe content of the flake-like particles was lower than that of the spherical particles. Their magnetizations were similar, and the coercivity of the flake-like particles was larger. The differences in morphology and magnetization were attributed to the surface effect, and the difference in coercivity to the shape effect.  相似文献   

6.
采用溶胶-凝胶表面包覆法制备了纳米Fe2O3-Al2 O3复合材料, 利用X射线衍射和透射电镜对样品的物相、 粒度和形貌进行了研 究. 结果表明, α-Fe2O3掺杂降低了Al2O3相变温度, 在900 ℃可以得到稳定的α-Al2O3相.  相似文献   

7.
γ-Fe2O3 nanoparticles were successfully synthesized by a chemically induced transformation of α-FeOOH.In this method,the precursor(α-FeOOH)was prepared by chemical precipitation,and then treated with a mixed FeCl2/NaOH solution to produce the nanoparticles.X-ray diffraction indicated that when the precursor was treated with FeCl2(0.22 mol/L)and NaOH(0.19 mol/L),pure γ-Fe2O3 nanoparticles were obtained.However,when the concentration of FeCl2 was<0.22 mol/L or the concentration of NaOH was<0.19 mol/L,α-FeOOH and γ-Fe2O3 phases co-existed in the nanoparticles.Transmission electron microscopy observations showed that in the samples with co-existing phases,the nanoparticles did not have identical morphologies.The pure γ-Fe2O3 nanoparticles were polygonal rather than spherical.The volume ratio of α-FeOOH and γ-Fe2O3 was estimated for the two-phase samples from magnetization data obtained from a vibrating sample magnetometer.This chemically induced transformation is novel,and could provide an effective route for the synthesis of other metal oxide nanocrystallites.  相似文献   

8.
Conclusions We have found that there is an exothermal peak on the DTA curve of nanostructured γ-Fe2O3 sample and that this peak is not repeatable. The XRD microstructure analysis confirms for the first time that this exothermal peak corresponds to the structural phase transition from γ-Fe2O3 to α-Fe2O3. After this transition, the nanostructured Fe2O3 crystalline grains grow continuously with increasing temperature.  相似文献   

9.
The claviform BaFe12O19 crystals were synthesized by the precipitation-toptactic reaction method using α-FeOOH and γ-FeOOH as raw materials respectively. The synthesis processes of BaFe12O19, studied by XRD, SEM, EDS, FT-IR, and TG-DTA techniques, included preparations of precursor γ and precursor α, formations of α-Fe2O3 and BaFe2O4, and production of rod-like BaFe12O19 through dehydroxylation of pod-like FeOOH, followed by reactions of α-Fe2O3 with BaCO3 and BaFe2O4. The crystallinity of α-Fe2O3 and BaCO3 from precursor α was better than from precursor γ due to the direct dehydroxylation of α-FeOOH, resulting in a lower nucleation rate and better crystallinity of BaFe2O4. BaFe12O19 prepared from precursor α showed lower crystallinity and purity with a higher length-diameter ratio than from precursor γ. The VSM results proved that the appearance of final products had an important influence on magnetic properties.  相似文献   

10.
用溶胶-凝胶法制备了纳米γ-Fe2O3及γ-Fe2O3/SiO2复合氧化物,以透视电镜(TEM)、热重 差热分析(TG-DTA)、Brunauer Emmett Teller (BET)分析和X射线衍射分析(XRD)对纳米粒子进行表征,以CH4为模型反应,在固定床流动反应器中对复合氧化物进行催化活性评价,并制作了气敏元件。考察了γ-Fe2O3及γ-Fe2O3/SiO2敏感元件对CO和其他还原性气体的灵敏度及焙烧温度对敏感度的影响,得到对CO检测的合适焙烧温度分别为500℃和600℃和最佳操作温度310℃。结果表明,γ-Fe2O3/SiO2纳米复合氧化物中SiO2对γ-Fe2O3的相变温度、加强热稳定性及提高气体灵敏度起到较大的作用。  相似文献   

11.
A novel type of composite absorber,i.e.Fe_2O_3/Fe_3O_4/MWCNTs composites(0%,1.7%and 5%MWCNTs),with microwave absorption properties was successfully fabricated by a facile hydrothermal method.The preparedα-Fe_2O_3/Fe_3O_4nanoparticles displayed rod-shaped morphology.The complex permittivity and permeability of the Fe_2O_3/Fe_3O_4/MWCNTs composites distinctly increased,furthermore,with the introduction of MWCNTs,the Fe_2O_3/Fe_3O_4/MWCNTs composites exhibited fine microwave absorption performance with strong absorption and wide absorption band.In particular,for Fe_2O_3/Fe_3O_4/1.7%MWCNTs composite with an absorber thickness of 2.5 mm,the reflection loss(RL)reached a minimum of-44.1 d B at 10.4 GHz and the effective absorption bandwidth(RL-10 d B)covered 3.3 GHz.The enhanced microwave absorption performance of the Fe_2O_3/Fe_3O_4/MWCNTs composites was attributed to the high dielectric loss and improved impedance matching which was closely related to the rod-shaped morphology of Fe_2O_3,Fe_3O_4and the introduction of MWCNTs.  相似文献   

12.
The structure of V2O5-P2O5-Sb2O3-Bi2O3 glass and its state of crystallization were studied by means of infrared spectroscopy and X-ray diffraction analysis. The results indicate that, in this glass, V and P exist mainly in the form of a single-stranded linear (VO3) n and an isolated (PO4) tetrahedral with no double bond. Partial V and P are connected through O, forming an amorphous structure of layered vanadium phosphate. Trivalent Sb3+ and Bi3+ open the V=O bond and appear in interlayers, so a weak three-dimensional structure is connected successfully. Along with the substitution of Sb2O3 for partial V2O5 or that of P2O5 for partial V2O5, the network structure of the glass is reinforced, and the crystallization is reduced.  相似文献   

13.
The effect of B sites on the catalytic activities of oxygen evolution reaction(OER)for perovskite oxides La_(0.6)Sr_(0.4)Co_xFe_(1-x)O_(3-δ)(x=0,0.2,0.4,0.6,0.8,1,denoted as LSF,LSCF-28,LSCF-46,LSCF-64,LSCF-82 and LSC,respectively)prepared by a convenient and simple method of electrospinning technique is reported.The prepared La_(0.6)Sr_(0.4)Co_xFe_(1-x)O_(3-δ)catalysts possess almost same crystal structures,similar morphologies(except for the LSC catalyst)and slightly different BET surface areas.Upon the optimization of the Co/Fe atomic ratio,the optimal LSCF-82 catalyst exhibits the OER performance with a low onset potential of 1.541 V,a small Tafel slope of 80.56 mV dec~(-1),a high charge-transfer rate and a large electrochemical surface area in 0.1 M KOH solution.LSCF-82 catalyst exhibits the long-term stability under the catalytic operation condition for 12 h.Such catalytic activity may mainly cause by the synergy of higher catalytic activity Co and lower catalytic activity Fe.Thus,the reasonable optimization of the transition metal composition in B sites for the perovskite oxides is in favor of the improvement of OER performance.  相似文献   

14.
A general strategy has been developed here to supramolecular self-assembly of nickel (Ⅱ)-substituted α-Keggin-type polyoxometalate and polyaniline coated Fe2O3 hollow nanospindle (Fe2O3 hollow nanospindle@PANI/α-SiW11Ni composites) via electrostatic attraction and hydrothermal method. Fe3+ was first hydrolyzed and polymerized into Fe2O3, then dissolved into [Fe(H2PO4)x]3?x, resulting in hollow structure. The polyoxometalate existed in polyaniline as a proton-doped counter-ion form, rather than as a separate crystalline state. The protons and anions entered the PANI main chain and combined with N atoms of amines and imines on the PANI chain ((-NH?+ ?= ?)/α-[SiW11Ni(H2O)O39]6-) to form poles and bipolar delocalization into π bonds of the whole polyaniline molecular chain, which leaded to conductance and polarization. The Fe2O3 hollow nanospindle@PANI/α-SiW11Ni composites were proven to be excellent microwave absorber in terms of reflection loss (RL) and bandwidth. The maximum RL value was up to ?53.6 ?dB at 3.5 ?mm and 6.9 ?GHz. The broadest absorption bandwidth exceeding ?10 dB was 6.3 ?GHz at a thickness of only 1.9 ?mm. Moreover, the ternary composites presented obvious multi-band absorption with the matching thickness range of 1.5–5 ?mm. The absorption peaks bandwidth reached as wide as 14.3 ?GHz, which included all C-Ku bands. The hollow and core-shell structures could provide non-uniform interface for the induced polarization loss and space for the reflecting and scattering of microwave. The carrier, pair-ion carrier and hydrogen bond network could lead to conduction loss. The magnetic losses were caused by eddy current effect and natural resonance. This work can lay a theoretical foundation for the design and performance regulation of new absorbing materials.  相似文献   

15.
单极性脉冲电流密度对铝合金MAO膜相结构和微结构的影响   总被引:6,自引:1,他引:5  
利用微弧氧化(MAO)技术在铝合金表面沉积陶瓷膜, 采用X射线衍射仪(XRD), 扫描电子显微镜(SEM), 电子能谱(EDS)和显微硬度方法, 研究了MAO过程中单极性脉冲电流密度与氧化膜力学性能和化学成分的关系. 发现在较高电流密度下制备的陶瓷膜中含有较多的α-Al2O3相, 而在较低电流密度下制备的陶瓷膜主要由γ-Al2O3相组成. 对陶瓷膜截面上不同厚度处的膜层化学成分分析表明, 组成氧化膜的主要物质α-Al2O3和γ-Al2O3的比例随深度的变化呈现出复杂的变化规律, 这一结果与相关的文献报道有所不同.  相似文献   

16.
纳米α-Fe2O3的制备及气敏性质的研究   总被引:4,自引:0,他引:4  
采用沉淀法制备了纳米晶α-Fe2O3粉体,并制作了厚膜型气体敏感元件。用热重-差热 (TG-DTA)、扫描电镜 (TEM)和二次粒度分布对α-Fe2O3粉体进行了表征。考察了掺杂贵金属或碳酸盐及焙烧温度对敏感元件气体灵敏度的影响。结果表明,纳米氧化铁具有粒度小、颗粒分布均匀的特点,并发现纳米氧化铁在焙烧温度为 600℃及掺杂 3%贵金属或碳酸盐的条件下,对CO气体均有很好的气敏特性。  相似文献   

17.
The world has been moving rapidly to find new eco-friendly energy sources. Water electrolysis consists of two reactions of Oxygen Evolution Reaction (OER) and Hydrogen Evolution Reaction (HER), whereas the OER is considered the rate-limiting step. The most commercialized electrode for OER in the alkaline electrolyte is Ni foam, but its original surface is hydrophobic. It is possible to accelerate the adsorption and desorption process of reactants and products during OER by adding hydrophilic functional groups such as –OH on the surface of Ni foam. In this study, a novel Gas-Liquid Interfacial Plasma (GLIP) engineering at room temperature was successfully applied to modify the Ni foam surface dilute (1 ?M) HNO3 solution. At a current density of 400 ?mA ?cm?2, GLIP-treated Ni foam electrodes at 1 ?M HNO3 concentrations showed OER overpotentials of 458 ?mV. Among all, GLIP with 1 ?M HNO3 treatment of 30 ?min showed 129 ?mV less overpotential than the nickel foam before treatment. In summary, GLIP can be justified as an environmentally friendly and efficient surface treatment to improve the wettability and OER performance of Ni-based electrodes in water electrolysis.  相似文献   

18.
纳米α-Fe2O3的燃烧法合成与表征   总被引:1,自引:0,他引:1  
用聚乙烯醇(PVA)作为络合剂,与硝酸铁反应,采用燃烧合成法制备出α Fe2O3纳米晶·研究了原料配比对产物性能的影响,通过TEM,FT IR和XRD实验研究了α Fe2O3纳米晶的结构·结果表明,硝酸铁和PVA的摩尔比为1∶0 5时所得到的产物颗粒边缘光滑,粒度分布均匀,燃烧反应充分进行,反应产物为红色颗粒状物质·络合物在150℃反应后的产物经450℃煅烧2h后得到的是纳米α Fe2O3·X射线衍射和红外光谱分析的结果显示,此时有机组分已分解完全·经TEM和XRD新单峰傅氏分析法测定,晶粒尺寸在25nm~40nm之间·  相似文献   

19.
过渡金属碳化物和氮化物也被称为MXenes材料,是一类具有独特性质的新型二维材料.经第一性原理计算发现,二维Ta4C3O2的电子结构可能具有拓扑性质,而Ta4C3已被成功制备,Ta4C3O2可通过表面功能化实现制备.这些结果将为研究MXenes材料的拓扑性质提供有利借鉴,也为今后的实际应用奠定基础.  相似文献   

20.
Metal Sm has been widely used in making Al-Sm magnet alloy materials. Conventional distillation technology to produce Sm has the disadvantages of low productivity, high costs, and pollution generation. The objective of this study was to develop a molten salt electrolyte system to produce Al-Sm alloy directly, with focus on the electrical conductivity and optimal operating conditions to minimize the energy consumption. The continuously varying cell constant (CVCC) technique was used to measure the conductivity for the Na3AlF6-AlF3-LiF-MgF2-Al2O3-Sm2O3 electrolysis medium in the temperature range from 905 to 1055℃. The temperature (t) and the addition of Al2O3 (W(Al2O3)), Sm2O3 (W(Sm2O3)), and a combination of Al2O3 and Sm2O3 into the basic fluoride system were examined with respect to their effects on the conductivity (κ) and activation energy. The experimental results showed that the molten electrolyte conductivity increases with increasing temperature (t) and decreases with the addition of Al2O3 or Sm2O3 or both. We concluded that the optimal operation conditions for Al-Sm intermediate alloy production in the Na3AlF6-AlF3-LiF-MgF2-Al2O3-Sm2O3 system are W(Al2O3) + W(Sm2O3)=3wt%, W(Al2O3):W(Sm2O3)=7:3, and a temperature of 965 to 995℃, which results in satisfactory conductivity, low fluoride evaporation losses, and low energy consumption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号