首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 17 毫秒
1.
设K是实Hibert空间H的非空闭凸子集,T:H→2H为集值映象,g:H→H为单值映象且Kg(H)。所谓一般集值变分不等式问题,即是指,求x*∈H,使得g(x*)∈K,w∈T(x*)且〈w,g(y)-g(x*)〉≥0,g(y)∈K。在求解以上一般集值变分不等式中,投影算法是常用的算法,但是传统的投影算法需集值映象T关于Hausdoff距离是Lipschtz的。首先,在不需要集值映象T关于Hausdoff距离是Lipschtz的情况下,建立了求解一般集值变分不等式的广义投影算法:第0步:取数列{ρ}j使得0ρj1,∑!j=0ρj=+!,∑!j=0ρj2+!.取g(x0)∈K,令j:=0。第1步:令vj∈T(xj),如果vj=0,则停止,此时xj为问题的解。如果vj≠0,则找wj使得〈vj,g(y)-g(xj)〉+〈wj,g(y)-g(xj)〉≥0,g(y)∈K。如果wj=0,则停止,此时xj是问题的解;否则,进入第2步。第2步:计算xj+1使得g(xj+1)=PK[g(xj)+ρjwj];令j←j+1,回到第1步。然后,在{w}j有界和集值映象T为g-强伪单调的条件下,证明了由该算法产生的序列{x}j强收敛于一般集值变分不等式的解。最后,对广义投影算法作一些修正,保证算法中的序列{w}j是有界的。  相似文献   

2.
1 引言与预备知识最近,文[1]引入并研究了一类非线性投影方程.本文的目的是讨论一类更广泛的非线性投影方程解的存在性.设H是一实Hilbert空间,具有内积〈·,·〉和范数‖·‖.设K:H→2H是一个集值映象,使得对任一x∈H,K(x)为H的非空闭凸子集.设h,g,T:H→H为三个自映象.我们讨论下述非线性投影方程h(x)=PK(x)[g(x)-ρTx],ρ>0,(1)解的存在性,其中PK表示H在K上的投影.问题(1)的特例:(ⅰ)如果K(x)≡K, x∈H,其中K H为一非空闭凸集,则方程(1)变为h(x)=PK[g(x)-ρTx] (2)当ρ=1时,投影方程(2)被文[1]引入并研究.(ⅱ)如果h(x)=g(x), x…  相似文献   

3.
设n≥2,m>3及xj,wj属于Rn,j=1,2,…,m.若x1,x2,x3互不相同,w1,w2,w3互不相同,本文给出了存在Rn中Mwbius变换g映射xj至wj(j=1,2,…,m)的充分必要条件.并对g的唯一性也进行了讨论.  相似文献   

4.
设n≥ 2 ,m >3及xj,wj属于Rn,j=1,2 ,… ,m .若x1 ,x2 ,x3互不相同 ,w1 ,w2 ,w3互不相同 ,本文给出了存在Rn 中M bius变换g映射xj至wj(j=1,2 ,… ,m)的充分必要条件 并对g的唯一性也进行了讨论  相似文献   

5.
广义松弛余强制变分不等式体系及二步投影方法   总被引:1,自引:1,他引:1  
设H为希尔伯特空间,〈.,.〉,‖.‖分别表示希尔伯特空间H中的内积和范数。K为H中的闭凸子集,T∶K×K→H为K×K上的任一映象。本文将重点讨论下面一类非线性变分体系(SNVI)问题:求x*,y*∈K使得〈ρT(y*,x*) x*-y*,y-x*〉≥0,y∈K,ρ>0,〈ηT(x*,y*) y*-x*,z-y*〉≥0,z∈K,η>0。文章中首先给出了希尔伯特空间H中一类带误差的二步投影方法,然后借助于投影方法的收敛性证明了由该算法生成的迭代序列强收敛于此类广义松弛余强制变分不等式体系(SNVI)问题的精确解。文中结果主要推广了Verma和S.S.Chang等的主要结论。  相似文献   

6.
在Hilbert空间中研究了广义变分不等式的投影算法.在算法的每一步,首先在集值映象T中选取适当的点,然后将它投影到变分不等式的可行集上,获得下一步的迭代点.在集值映象为伪单调*的条件下,证明了迭代序列弱收敛于广义变分不等式的解.  相似文献   

7.
若自相似迭代函数系{φj}^mj=1(满足φj(x)=ρjRjx+bj,bj∈R^d,其中0〈ρj〈1,Rj为d×d正交矩阵)关于不变开集Ω满足有限型条件,K是迭代函数系{φj}^mj=1生成的自相似集.但是,Ω与K的交集可能为空集.本文用构造方法证明存在一个不变开集U,使得U∩K≠φ,且迭代函数系{φj}^mj=1关于不变开集U也满足有限型条件.  相似文献   

8.
首先将序列{xn}的迭代定义为:x0∈K,xn+1=(1-α1n)xn+α1nTn1y1n,y1n=(1-α2n)xn+α2nTn2y2n,...,y(m-1)n=(1-αmn)xn+αmnTnmxn,其中{αin}满足一定的条件.若存在严格增加的函数:[0,∞)→[0,∞),且(0)=0,使得〈Tnix-x*,j(x-y)〉≤kn‖x-x*‖2-(‖x-x*‖),j(x-x*)∈J(x-x*),x∈K,i=1,2,...,m,那么{xn}强收敛到x*.x*是K中有限个一致L-李普希茨映象的公共不动点. K是Banach空间E的非空闭凸子集.  相似文献   

9.
设K是实p-一致凸Banach空间E中的非空闲凸子集,T是K到自身的一致Lipschit-zian映象,且F(T):={x∈K:Tx=x}≠φ.对任给的x0∈K,带误差的Ishikawa迭代程序生成序列{xn},在T是一致伪压缩映象的条件下,证明了‖xn-Txn‖→+0(n→∞).进一步,当T是全连续算子时,证明了{xn}强收敛到T的不动点.  相似文献   

10.
Banach空间中关于一致Lipschitzian映象的一个新结果   总被引:1,自引:0,他引:1  
设E是一实Banach空间,K为E中的一非空闭凸子集,Ti:K→K,i=1,2,3为一致Lipschitzian连续映象.如果序列kn(∩)[1,∞),kn→1,{αn}、{βn}、{δn}∈[0,1],满足:(i)δn→1(n→∞);(ii)∑∞n=0αn=∞,∑∞n=0βn=∞;(iii)∑∞n=0α2n<∞,∑∞n=0αnβn<∞;(iv)∑∞n=0αn(kn-1)<∞,对x0∈K,让{xn}满足以下迭代序列xn+1=(1-αn)xn+αnT n1ynyn=(1-βn)xn+βnT n2znzn=(1-δn)xn+δnT n3xn,如果存在严格增的函数φ:[0,∞)→[0,∞),φ(0)=0,使得对(A)j(x+y)∈J(x+y),x∈K(i=1,2,3)有〈T nix-x*,j(x-x*)〉≤kn||x-x*||-(ψ)(||x-x*||),则{xn}收敛于x*.文章主要结果推广了张石生教授最近文献[1,8]以及文献[6-7]等的主要结果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号