首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
生物炭还田是一种绿色可持续的固碳技术,可实现农田土壤碳封存、农林废弃物高效资源化利用和土壤改良等多重目标。量化农田土壤中的生物炭不仅有助于估量其长期稳定的碳储量,为生物炭碳汇计量提供数据支撑,同时也可作为大田土壤中生物炭稳定性的评价指标。生物炭属于黑炭类物质,基于环境中黑炭的定量方法,依据测定原理将生物炭定量方法归纳为热氧化法、化学氧化法、苯多羧酸分子标记法和光学法,综述了各种方法的测试原理、技术特点及其优缺点,旨在为精准选择合适的生物炭定量方法提供技术参考。  相似文献   

2.
生物炭应用技术研究   总被引:3,自引:0,他引:3  
对生物炭研究历史、现状、存在的问题及产业化前景进行了综合分析与评述,重点阐述了生物炭在能源、环境、农业等领域的应用价值与重要作用。认为生物炭在应对气候与环境变化、固碳减排、保障能源安全和粮食安全等方面都具有重要应用价值和现实意义。文章提出了以农林废弃物资源化利用为基础的生物炭研究发展方向、建议和产业化开发与应用的技术途径。为推动生物炭工程技术创新与产业化发展提供参考依据。  相似文献   

3.
城市产生的固体垃圾数量逐年上升,使得垃圾渗滤液成为一个重大问题,亟待解决。在无氧或缺氧状态下,将生物质经高温热解制备富碳的生物炭并用于污水处理,是“以废治废”思路的重要实践。生物炭主要是来源于农作物废弃物、城市垃圾等低成本原料,在农业和环境领域内应用范围广。我国幅员辽阔,各类生物质资源丰富多样,但现阶段生物质资源的不合理处置,也造成大量浪费和环境问题。基础研究表明,将生物质废弃物的治理与渗滤液的处理相结合可实现以废治废。该文首先简要介绍垃圾渗滤液处理工艺,然后阐述生物炭材料在垃圾渗滤液处理工艺中的应用及前景。  相似文献   

4.
金属盐类对玉米芯水热炭化过程的影响   总被引:1,自引:0,他引:1  
以生物质玉米芯为原料,研究水热炭化法制备生物炭技术特点.在180~230℃水热条件下,分别以水、氯化铝和氯化锌溶液为液相进行了生物炭化过程实验,检验了温度和液相因素的影响,使用元素分析、傅里叶红外光谱、扫描电子显微镜等技术对生成生物炭的化学及结构变化特性进行了分析和表征.所得生物炭产率为30.3%~50.12%,碳含量为44.26%~63.72%、C/O为0.89%~2.08%、C/H为7.26%~14.19%,热值为17.14~24.37 m J/kg.与水相比,在金属盐类溶液中较低的温度下可生成有较高碳含量和热值的生物炭,在环境扫描电镜中发现该类生物炭呈现较多的球形结构,其中氯化铝对生物炭化过程影响显著.研究为生物质的水热碳化过程合理化提供技术参考.  相似文献   

5.
随着国内对生物炭研究和应用的不断深入,生物炭在农业、环境等方面的优势逐渐凸显。该文对近几年来生物炭在农业和环境保护等方面的应用现状以及对生物炭的产业发展进行了回顾和总结,同时对目前的生物炭应用过程中可能存在的一些问题进行了进一步的探讨与总结,以期为生物炭在农业和环境领域的应用和进一步发展提供参考。  相似文献   

6.
生物炭不仅可以改良土壤理化性质,并且能够帮助土壤长期固碳从而减缓温室气体的排放。以江苏东台杨树人工林土壤为对象,设计4种生物炭添加量CK(0)、T1(40 t/hm2)、T2(80 t/hm2)、T3(120 t/hm2),探究生物炭及其季节动态变化对土壤理化性质、微生物量和碳源代谢的影响。结果表明:生物炭施入降低土壤含水率,却使得土壤pH升高; 生物炭导致土壤微生物量氮(SMBN)下降,并且SMBN具有明显季节动态变化,即冬春偏高、夏秋相对较低; 而生物炭没有明显改变土壤微生物量碳(SMBC),但SMBC季节动态变化明显。高浓度生物炭(T3)显著提高了微生物在Biolog平板上的AWCD(平均单孔颜色变化率),但对碳源代谢多样性影响不显著。主成分分析表明,相比不同的施炭处理,同一处理季节的差异更显著地影响了微生物碳源的代谢模式。  相似文献   

7.
森林生态系统的固碳功能和碳储量研究进展   总被引:44,自引:0,他引:44  
森林是陆地生态系统的重要组成部分,充分发挥森林的固碳能力关系到能否降低大气CO2浓度和抑制全球变暖趋势.本文在回顾森林固碳作用和碳储量研究进展的基础上,对未来研究提出粗浅看法:探知全球森林生态系统的碳储量和碳通量是调控碳循环过程的必要环节和最大难题之一,样地清查、遥感分析和模型模拟等方法的综合运用将是解决这一问题的根本途径;森林生态系统的固碳和生物多样性保护等生态功能与采伐森林资源不存在绝对对立关系,以演替理论指导森林管理有利于发挥森林生态系统的固碳作用和生物多样性保护功能,同时能够实现对森林资源的适度经济利用;应重视和加强对中高纬度森林枯落物碳库的研究.  相似文献   

8.
生物炭具有比表面积高、表面官能团丰富、结构稳定、低成本及原料来源于可再生生物质等特性,被广泛应用于环境修复领域.然而,现有研究多集中于生物炭的理化性质与功能,而有关生物炭释出物的研究较少.本工作详细分析了生物炭释出物的正负面效应,罗列了减少生物炭可溶性释出物的方法,并例举了低释出生物炭的现有应用.本工作为后续低释出生物炭的制备、改良与应用提供了可借鉴的方法与思路.  相似文献   

9.
生物炭是生物质经过热化学过程形成的一种多孔材料,具有优良的表面性能和结构,富含碳元素.生物炭的原料来源广泛、制备工艺简单,是一种理想的活性炭替代材料.生物炭的高含碳量、大比表面积、丰富的表面官能团和大的阳离子交换量等特性,使其在环境领域中发挥重要作用.概述几种常用的生物炭制备技术,探讨影响生物炭理化性质的因素,并重点介绍改性生物炭的几种方法及其在土壤修复、废水处理等环境领域的应用.此外,还指出当前研究中存在的不足之处,并提出有关生物炭未来研究方向的建议.  相似文献   

10.
<正>生物炭是由生物质在无氧或者缺氧条件下热处理得到的固体碳质材料,已广泛应用于土壤改良、土壤修复、水污染处理、作物增产、碳固定等领域。生物质热解碳化后形成的生物炭具有较高含量且稳定的碳,可降低由生物质燃烧和自然降解所产生的碳排放(碳负性)。施加到土壤中的生物炭可将碳储存在土壤中,并同时改良和(或)修复土壤。此外,生物质热解过程中产生的生物油和合成气可作为替代化石燃  相似文献   

11.
为确定生物炭对酸化土壤的改良效果,以pH 5.63和pH 5.10的温室黄瓜连作后的土壤为研究对象,分别添加不同比例的生物炭,m(生物炭)∶m(土壤)=1∶100,3∶100,5∶100,以不添加生物炭的土壤为对照。采用温室内塑料钵培养的方法,研究不同生物炭添加量对酸化土壤改良效应。结果表明,不同生物炭添加量都可以提高酸化土壤的pH,阳离子交换量、交换性盐基总量和有机质的质量,降低土壤交换性酸总量,交换性Al~(3+)的量和交换性H~+的量。土壤pH与土壤交换性酸总量、交换性Al~(3+)的量和交换性H~+的量呈负相关;与土壤阳离子交换量、有机碳的质量和交换性盐基总量呈正相关。培养结束后,pH 5.63的土壤m(生物炭)∶m(土壤)=1∶100,3∶100,5∶100分别比对照的pH提高了8.5%,11.2%,17.2%;而pH 5.10的土壤m(生物炭)∶m(土壤)=1∶100,3∶100,5∶100,分别比对照的pH提高了13.5%,18.0%,20.4%。2种土壤均以m(生物炭)∶m(土壤)=5∶100处理效果最显著,而且对酸化严重的土壤改良效果更明显。  相似文献   

12.
以广东韶关大宝山矿山废水污染的农田为研究对象,利用超纯水和甲苯/甲醇提取的溶解性有机质(DOM)的三维荧光光谱平行因子分析(EEM-PARAFAC)技术,追踪荔枝树枝生物炭1年内在土壤层0~100 cm深度范围的迁移行为及其协同重金属镉(Cd)的纵向迁移性质. 结果表明:生物炭增加了0~60 cm深土壤层溶解性有机碳(DOC)的质量分数,增加了表层土壤的pH,对深层土壤pH无明显影响;EEM-PARAFAC解析得到3个DOM组分(1个类蛋白和2个类腐殖质组分),生物炭的添加增大了0~60 cm深土壤层类腐殖质的质量分数;并且甲苯/甲醇提取的DOM在0~60 cm深土壤层中均检测出生物炭特有的多环芳烃结构,说明生物炭在1年内发生了明显的纵向迁移;生物炭能够有效降低0~20 cm深土壤中有效态Cd的质量分数,但20~60 cm深土层中有效态Cd与对照组的相比最高增加了148%左右. 研究表明:需要特别关注生物炭协同重金属在土壤中纵向迁移行为所带来的环境影响.  相似文献   

13.
刘蕊  李松  罗璇  刘丹丹  张辉 《科学技术与工程》2021,21(27):11455-11462
生物炭作为一种多孔材料可用于污染水体修复,但生物质直接制备的原始生物炭通常吸附能力有限且回收再利用和固液分离困难。以原始生物炭为基础,通过各种改性技术制得的功能化生物炭在水处理领域表现出巨大的应用潜力。归纳和分析了近年来功能化生物炭对水体无机物污染物的吸附研究,总结了吸附水体无机污染物的功能化生物炭的制备方法、吸附性能、机制和影响因素。在此基础上,从实际应用、经济和技术可行性等方面提出了今后研究的重点。  相似文献   

14.
为了明确不同秸秆利用方式对作物生长及土壤微生物的影响,采用盆栽试验,研究秸秆直接添加和秸秆生物炭添加对大豆生长状况、根际土壤有机碳及微生物群落功能多样性的影响.结果表明:秸秆生物炭添加(MB和WB)能有效提高大豆盛花期地下生物量.秸秆直接添加(M和W)能显著增加大豆花期根际土壤有机碳的含量,玉米秸秆直接添加处理(M)下的有机碳含量最高,为21.15 mg/g.大豆成熟期,秸秆生物炭添加处理(MB和WB)下土壤有机碳含量较空白处理(CK)显著增加,玉米秸秆添加处理(M)下根际土壤有机碳含量显著高于小麦秸秆添加处理(W).不同秸秆利用方式下大豆根际土壤平均颜色变化率(AWCD)随时间延长而增加,MB和WB处理较M和W处理能显著提高成熟期大豆根际土壤AWCD值.因此,可利用秸秆生物炭添加改善大豆根际土壤微生物活性,提高土壤碳贮量.  相似文献   

15.
为了明确植被恢复区生物土壤结皮光合固碳活性对水热因子的响应,以露天煤矿排土场两种生物土壤结皮(藓结皮和藻结皮)为材料,通过人工气候室控制温度和水分,采用Li-6400(簇状叶室)光合仪研究生物土壤结皮光合固碳活性对9个温度、6个模拟降水量水平的响应.结果表明:藓类结皮光合固碳活性显著高于藻类结皮,温度和水分均显著影响生物土壤结皮光合固碳活性,温度、水分及结皮类型三者之间的交互效应也显著影响生物土壤结皮光合固碳活性.藓类和藻类结皮光合固碳活性的最适温度分别为20~25、15~20℃,最适降水量均为2 mm.  相似文献   

16.
生物炭在土壤应用过程,不可避免地会对与土壤之间接触的机械设备部分产生腐蚀作用。为探究生物炭应用于农业生产中对机械设备以及金属工具损耗的影响,采用分别在700、400和100℃温度下裂解制备的小麦秸秆生物炭(WB)、水稻秸秆生物炭(RB)和松木生物炭(PB)的生物炭对304不锈钢板材进行腐蚀处理,并测量其极化曲线和电化学阻抗谱和腐蚀表现。结果表明:与空白组(CK)对比,相较于304不锈钢的腐蚀速率,在施入WB的土壤中,腐蚀速率会随着WB裂解温度的增大而增大;而加入RB的土壤会加剧不锈钢的腐蚀,其中在加入400℃RB的土壤中腐蚀速率达到最大;这是因为WB和RB的加入会提升土壤中的Cl~-含量至足以达到点蚀效应的程度加速了不锈钢板材的腐蚀。与此同时,发现100℃制备的PB生物炭可以抑制不锈钢的腐蚀。总而言之,不同生物质和制备温度的生物炭在土壤实际应用中表现出不同的腐蚀和抗腐蚀特性,因此深入研究这些方面将为其农业应用具有深远影响。  相似文献   

17.
固碳过程对于改善土壤质量、维持农田生态系统、保障全球粮食安全、缓解气候变化趋势等至关重要。本文介绍了农田土壤的生物与非生物固碳过程,阐述了土壤质地、水热变化、全球变暖和人为因素对农田土壤固碳过程的影响。总结了目前较受重视的一些农田固碳措施(施肥、灌溉、秸秆还田、生物炭质施入等)及其对农田土壤固碳能力的改善和应用中存在的问题,并对今后的相关研究作出展望。  相似文献   

18.
 干旱、半干旱地区的生态环境条件脆弱,光能自养生物在荒漠地区地表的物质循环和能量流动中起着重要作用。藻类和苔藓是荒漠地区地表普遍存在的固碳生物,不仅能够改善土壤的物理性质,起到保护土壤的作用,同时能够通过特定蓝藻的固氮作用增加土壤的氮含量,最重要的是这些固碳生物能够通过光合作用固定空气中的CO2,是荒漠地区土壤表层固碳的主要贡献者。荒漠地区生态系统固碳量的研究也是研究全球气候变化的重要组成部分,固碳量的大小不仅受自然条件的约束,也与土壤表层固碳生物(主要是藻类和苔藓)的组成密切相关。当土壤中仅有丝状蓝藻存在时固碳速率较低,随着绿藻等高等藻类和苔藓的出现,固碳速率快速增加。本文综述了荒漠地区土壤表层固碳生物组成和影响地表固碳的因素,回顾和展望了地表固碳的研究方法。  相似文献   

19.
生物炭对土壤重金属吸附机理研究进展   总被引:1,自引:0,他引:1  
生物炭是生物质在缺氧或是无氧条件下低温热解而成的高富碳产物,其精致的孔隙结构与较大的比表面积,丰富的表面官能团,使其对重金属离子具有较强吸附能力.近年来,生物炭修复土壤重金属污染已成为研究热点.文章对生物炭的性质、吸附重金属的作用机理、影响生物炭吸附的各个因素以及修复土壤后对重金属生物有效性等方面进行综述,最后提出生物炭未来在修复土壤重金属污染方面的研究方向.  相似文献   

20.
人工林施肥是一种重要的经营管理措施,而近年来沼液的处理与生物炭肥的使用也引起了人们广泛关注。在苏北杨树人工林集中分布区开展了沼液(施用量为0、125、250、375 m3/hm2)和生物炭(施用量为0、40、80、120 t/hm2)交互肥效实验,结果表明:①在所有沼液施肥水平中,生物炭的施用增加了表层土壤的活性有机碳,并提高了土壤微生物生物量碳氮比,使得微生物群落向真菌主导类型发展; ②在所有沼液施肥水平中,生物炭的添加显著提高了表层土壤(0~10 cm)的pH,促进了土壤的氮矿化和硝化作用; ③沼液和生物炭对土壤活性有机碳和pH具有显著的交互效应。因此,沼液和生物炭混施能进一步促进土壤活性有机碳的含量,改良土壤肥力,提高人工林生态系统生产力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号