首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Desai SA  Bezrukov SM  Zimmerberg J 《Nature》2000,406(6799):1001-1005
Growth of the malaria parasite in human red blood cells (RBCs) is accompanied by an increased uptake of many solutes including anions, sugars, purines, amino acids and organic cations. Although the pharmacological properties and selectivity of this uptake suggest that a chloride channel is involved, the precise mechanism has not been identified. Moreover, the location of this uptake in the infected RBC is unknown because tracer studies are complicated by possible uptake through fluid-phase pinocytosis or membranous ducts. Here we have studied the permeability of infected RBCs using the whole-cell voltage-clamp method. With this method, uninfected RBCs had ohmic whole-cell conductances of less than 100 pS, consistent with their low tracer permeabilities. In contrast, trophozoite-infected RBCs exhibited voltage-dependent, non-saturating currents that were 150-fold larger, predominantly carried by anions and abruptly abolished by channel blockers. Patch-clamp measurements and spectral analysis confirmed that a small (< 10 pS) ion channel on the infected RBC surface, present at about 1,000 copies per cell, is responsible for these currents. Because its pharmacological properties and substrate selectivities match those seen with tracer studies, this channel accounts for the increased uptake of small solutes in infected RBCs. The surface location of this new channel and its permeability to organic solutes needed for parasite growth indicate that it may have a primary role in a sequential diffusive pathway for parasite nutrient acquisition.  相似文献   

2.
Plasmodium knowlesi is an intracellular malaria parasite whose natural vertebrate host is Macaca fascicularis (the 'kra' monkey); however, it is now increasingly recognized as a significant cause of human malaria, particularly in southeast Asia. Plasmodium knowlesi was the first malaria parasite species in which antigenic variation was demonstrated, and it has a close phylogenetic relationship to Plasmodium vivax, the second most important species of human malaria parasite (reviewed in ref. 4). Despite their relatedness, there are important phenotypic differences between them, such as host blood cell preference, absence of a dormant liver stage or 'hypnozoite' in P. knowlesi, and length of the asexual cycle (reviewed in ref. 4). Here we present an analysis of the P. knowlesi (H strain, Pk1(A+) clone) nuclear genome sequence. This is the first monkey malaria parasite genome to be described, and it provides an opportunity for comparison with the recently completed P. vivax genome and other sequenced Plasmodium genomes. In contrast to other Plasmodium genomes, putative variant antigen families are dispersed throughout the genome and are associated with intrachromosomal telomere repeats. One of these families, the KIRs, contains sequences that collectively match over one-half of the host CD99 extracellular domain, which may represent an unusual form of molecular mimicry.  相似文献   

3.
Red blood cells infected with mature stages of the malaria parasite Plasmodium falciparum bind to the endothelial lining of capillaries and venules. This sequestration is important for the survival of the parasite but may have severe consequences for the host. For example, it is involved in the causation of cerebral malaria which carries 25% mortality. Knob-like protrusions present on the surface of infected erythrocytes have been considered necessary but not sufficient for this cytoadherence. Here we describe the adhesion to endothelial cells of infected erythrocytes which do not have knobs. A human monoclonal antibody (33G2) which was specific for an epitope containing regularly spaced dimers of glutamic acid present in the repeated amino-acid sequences of some defined P. falciparum antigens was found to inhibit cyto-adherence and may therefore be an important reagent for elucidating the molecular basis of parasite sequestration.  相似文献   

4.
Malaria parasites--discovery of the early liver form   总被引:1,自引:0,他引:1  
J F Meis  J P Verhave  P H Jap  R E Sinden  J H Meuwissen 《Nature》1983,302(5907):424-426
Infections of mammalian malaria parasites start when sporozoites from an infected anopheline mosquito are injected into the bloodstream of the host. The sporozoites enter the hepatocytes and become transformed into exoerythrocytic schizonts. Since the discovery of the primate parasite Plasmodium cynomolgi in monkey hepatocytes and the rodent parasite Plasmodium berghei in hamster hepatocytes, the ultrastructure of these stages has been extensively studied both in primate and rodent plasmodia. These observations relate only to the development of the exoerythrocytic schizont 25 h after sporozoite injection until the final maturation (of P. berghei) 50 h post-inoculation. Recently, we have studied the route of entry of sporozoites across the cellular lining of liver sinusoids and invasion of the liver parenchymal cells by using transmission electron microscopy. The results of these studies in combination with other physiological experiments strongly suggested that the sporozoite was initially harboured by the Kupffer cell, from which the parasite escaped into the neighbouring hepatocyte. The migration of sporozoites from liver sinusoids to hepatocytes can be achieved within a few minutes. We present here the first ultrastructural observations on the natural transformation of intrahepatocytic sporozoites into exoerythrocytic forms in vivo, using the rodent malaria parasite P. berghei in a laboratory host, the Brown Norway rat. These observations complete the search for the final link in the life cycle of malaria parasites.  相似文献   

5.
Lectin-like polypeptides of P. falciparum bind to red cell sialoglycoproteins   总被引:14,自引:0,他引:14  
M Jungery  D Boyle  T Patel  G Pasvol  D J Weatherall 《Nature》1983,301(5902):704-705
Attempts to control human malaria by immunological means could be compromised by antigenic variability within and between different strains of malarial parasites1. A useful alternative approach might be to block parasite antigens which are important in the mechanisms of invasion of red cells. As the major human parasite Plasmodium falciparum is highly specific for human red cells, isolation of the proteins involved in the recognition of red cells by this parasite might be of particular value. Recent studies suggest that the major red cell sialoglycoproteins (SGPs), glycophorins A, B and possibly C, may carry the sites recognized by the parasite2-4. Furthermore, because certain carbohydrates present on SGPs such as N-acetylglucosamine are able to block invasion by the parasite5, they may be involved in the initial interaction between parasite and red cell. We have now identified parasite proteins which bind to SGP or N-acetylglucosamine on Sepharose 4B columns. Three proteins, of molecular weights (MWs) 140,000 (140K), 70K and 35K, seem to be specifically bound by N-acetylglucosamine.  相似文献   

6.
The late blood stages of the human malaria parasite, Plasmodium falciparum, carry a major surface antigen, p190, of molecular weight (Mr) 190,000. This antigenically variable protein is actively processed, first as the parasite matures and again when it is released into the blood stream and invades a new erythrocyte to initiate a cycle of growth. It elicits a strong immune response in man; all tested adult sera from endemic areas have antibodies against this protein. Our evidence indicates that purified p190 can alter the course of parasitaemia in monkeys with falciparum malaria. We have also succeeded in cloning part of the gene for p190 and expressing it in Escherichia coli. To this end we have developed a new technique, antibody select, which greatly simplifies final identification of expressing clones.  相似文献   

7.
I J Udeinya  L H Miller  I A McGregor  J B Jensen 《Nature》1983,303(5916):429-431
An important feature of Plasmodium falciparum malaria which differentiates it from other human malarias is that erythrocytes infected with trophozoites and schizonts are not present in the peripheral blood but are sequestered along capillary and venular endothelium. Infected erythrocytes attach via parasite-induced ultrastructural modifications on the surface of the infected cells, called 'knobs'. This sequestration may be important for parasite survival because it prevents infected erythrocytes from circulating through the spleen where they could be eliminated. We have established an in vitro correlate of sequestration and used it to demonstrate that immune sera from repeatedly infected Aotus monkeys inhibit binding of infected erythrocytes to endothelial cells. We have investigated whether antiserum that blocks binding of one isolate of P. falciparum to target cells can block or reverse binding of other isolates. We report here that sera which block or reverse binding are strain-specific, indicating that the corresponding antigens on the surface of the infected erythrocytes are strain (isolate)-specific.  相似文献   

8.
The human malaria parasite Plasmodium vivax is responsible for 25-40% of the approximately 515 million annual cases of malaria worldwide. Although seldom fatal, the parasite elicits severe and incapacitating clinical symptoms and often causes relapses months after a primary infection has cleared. Despite its importance as a major human pathogen, P. vivax is little studied because it cannot be propagated continuously in the laboratory except in non-human primates. We sequenced the genome of P. vivax to shed light on its distinctive biological features, and as a means to drive development of new drugs and vaccines. Here we describe the synteny and isochore structure of P. vivax chromosomes, and show that the parasite resembles other malaria parasites in gene content and metabolic potential, but possesses novel gene families and potential alternative invasion pathways not recognized previously. Completion of the P. vivax genome provides the scientific community with a valuable resource that can be used to advance investigation into this neglected species.  相似文献   

9.
A F Slater  A Cerami 《Nature》1992,355(6356):167-169
The incidence of human malaria has increased during the past 20 years; 270 million people are now estimated to be infected with the parasite. An important contribution to this increase has been the appearance of malaria organisms resistant to quinoline-containing antimalarials such as chloroquine and quinine. These drugs accumulate in the acid food vacuoles of the intraerythrocytic-stage malaria parasite, although the mechanism of their specific toxicity in this organelle is uncertain. The primary function of the food vacuole is the proteolysis of ingested red cell haemoglobin to provide the growing parasite with essential amino acids. Haemoglobin breakdown in the food vacuole releases haem, which if soluble can damage biological membranes and inhibit a variety of enzymes. Rather than degrading or excreting the haem, the parasite has evolved a novel pathway for its detoxification by incorporating it into an insoluble crystalline material called haemozoin or malaria pigment. These crystals form in the food vacuole of the parasite concomitant with haemoglobin degradation, where they remain until the infected red cell bursts. The structure of haemozoin comprises a polymer of haems linked between the central ferric ion of one haem and a carboxylate side-group oxygen of another. This structure does not form spontaneously from either free haem or haemoglobin under physiological conditions, and the biochemistry of its formation is unclear. Here we report the identification and characterization of a haem polymerase enzyme activity from extracts of Plasmodium falciparum trophozoites, and show that this enzyme is inhibited by quinoline-containing drugs such as chloroquine and quinine. This provides a possible explanation for the highly stage-specific antimalarial properties of these drugs.  相似文献   

10.
11.
12.
Mu J  Duan J  Makova KD  Joy DA  Huynh CQ  Branch OH  Li WH  Su XZ 《Nature》2002,418(6895):323-326
The Malaria's Eve hypothesis, proposing a severe recent population bottleneck (about 3,000-5,000 years ago) of the human malaria parasite Plasmodium falciparum, has prompted a debate about the origin and evolution of the parasite. The hypothesis implies that the parasite population is relatively homogeneous, favouring malaria control measures. Other studies, however, suggested an ancient origin and large effective population size. To test the hypothesis, we analysed single nucleotide polymorphisms (SNPs) from 204 genes on chromosome 3 of P. falciparum. We have identified 403 polymorphic sites, including 238 SNPs and 165 microsatellites, from five parasite clones, establishing chromosome-wide haplotypes and a dense map with one polymorphic marker per approximately 2.3 kilobases. On the basis of synonymous SNPs and non-coding SNPs, we estimate the time to the most recent common ancestor to be approximately 100,000-180,000 years, significantly older than the proposed bottleneck. Our estimated divergence time coincides approximately with the start of human population expansion, and is consistent with a genetically complex organism able to evade host immunity and other antimalarial efforts.  相似文献   

13.
Species of malaria parasite that infect rodents have long been used as models for malaria disease research. Here we report the whole-genome shotgun sequence of one species, Plasmodium yoelii yoelii, and comparative studies with the genome of the human malaria parasite Plasmodium falciparum clone 3D7. A synteny map of 2,212 P. y. yoelii contiguous DNA sequences (contigs) aligned to 14 P. falciparum chromosomes reveals marked conservation of gene synteny within the body of each chromosome. Of about 5,300 P. falciparum genes, more than 3,300 P. y. yoelii orthologues of predominantly metabolic function were identified. Over 800 copies of a variant antigen gene located in subtelomeric regions were found. This is the first genome sequence of a model eukaryotic parasite, and it provides insight into the use of such systems in the modelling of Plasmodium biology and disease.  相似文献   

14.
M H Rodriguez  M Jungery 《Nature》1986,324(6095):388-391
Several observations suggest that iron is essential for the development of malaria parasites but there is evidence that the parasites in erythrocytes do not obtain iron from haemoglobin. The total haemin level in parasitized erythrocytes does not vary during parasite development, indicating that the iron-containing moiety of haemoglobin is not detectably metabolized. Although parasite proteases can degrade the protein part of haemoglobin in red cells, no parasite enzymes that degrade haemin have been identified. In mammalian cells, haemin is degraded to carbon monoxide and bilirubin by the enzyme haeme oxygenase. This enzyme has not been found in malaria parasites. In fact haemin has been found to be toxic to parasite carbohydrate metabolism. Thus, iron apparently cannot be liberated from haemin and instead is sequestered in infected red cells as haemozoin, the characteristic pigment associated with malarial infection. If iron bound to transferrin is the source of ferric ions for malaria parasites within mature erythrocytes, then the parasite must synthesize its own transferrin receptor and localize it on the surface of the infected cell, because the receptors for transferrin are lost during erythrocyte maturation. Our results here suggest that Plasmodium falciparum synthesizes its own transferrin receptors enabling it to take up iron from transferrin by receptor-mediated endocytosis.  相似文献   

15.
从疟原虫的不同发育时期、不同的疫苗成份和宿主的遗传基因限制性等方面,深入研究抗疟疾疫苗。作用于红细胞前期的疟疾疫苗主要是抑制疟疾的临床发作,控制疟疾的传播;作用于红细胞期的疟疾疫苗诱导宿主体液免疫系统,产生特异性抗体,抑制疟原虫侵入和感染红细胞,达到减少疟原虫虫荷,降低疟疾的发病率和死亡率。作用于疟原虫有性生殖时期,控制疟疾传播的疟疾疫苗,其在于控制一个地区疟原虫的感染率和疟疾发病率,但对已感染疟原虫个体的免疫保护作用意义不大。在设计疟疾疫苗的过程中,必须克服不同个体的遗传基因限制性问题。由于疟原虫生活史的复杂性,同时也必须考虑到疟原虫不同发育阶段抗原成份的复杂性。  相似文献   

16.
Recent studies have identified and characterized a ring-infected erythrocyte surface antigen (RESA) of the human malaria parasite Plasmodium falciparum with a relative molecular mass (Mr) of approximately 155,000 (refs 1-7). RESA is localized in the micronemes of merozoites and also the membrane of red cells infected with ring-stage parasites. It is thought to be released through the apical pore from the rhoptry at the time of merozoite invasion. Because antibodies directed against this antigen strongly inhibit parasite growth in vitro, RESA may be useful in developing a vaccine against this parasite Here we describe an immunization trial using Aotus monkeys and Escherichia coli-derived fused polypeptides corresponding to various regions of the RESA molecule. Some monkeys in all test groups, but not in the control group, were protected against overwhelming infection. Strikingly, protection correlated with antibody responses to either of two different repetitive sequences in RESA.  相似文献   

17.
The annotated genomes of organisms define a 'blueprint' of their possible gene products. Post-genome analyses attempt to confirm and modify the annotation and impose a sense of the spatial, temporal and developmental usage of genetic information by the organism. Here we describe a large-scale, high-accuracy (average deviation less than 0.02 Da at 1,000 Da) mass spectrometric proteome analysis of selected stages of the human malaria parasite Plasmodium falciparum. The analysis revealed 1,289 proteins of which 714 proteins were identified in asexual blood stages, 931 in gametocytes and 645 in gametes. The last two groups provide insights into the biology of the sexual stages of the parasite, and include conserved, stage-specific, secreted and membrane-associated proteins. A subset of these proteins contain domains that indicate a role in cell-cell interactions, and therefore can be evaluated as potential components of a malaria vaccine formulation. We also report a set of peptides with significant matches in the parasite genome but not in the protein set predicted by computational methods.  相似文献   

18.
Malaria. Cooperative silencing elements in var genes   总被引:11,自引:0,他引:11  
Deitsch KW  Calderwood MS  Wellems TE 《Nature》2001,412(6850):875-876
Each Plasmodium falciparum malaria parasite carries about 50 var genes from a diverse family that encode variable adhesion proteins on the infected red blood cells of the host, but individual parasites single out just one var gene for expression and silence all the others. Here we show that this silencing is established during the DNA-synthesis phase (S phase) of the cell cycle and that it depends on the cooperative interaction between two elements in separate control regions of each var gene (the 5'-flanking region and the intron). This finding should help to clarify the mechanisms by which parasites coordinate the silencing and activation of var genes that are responsible for antigenic variation in malaria.  相似文献   

19.
The malaria parasite Plasmodium falciparum is one of the most successful human pathogens. Specific virulence factors remain poorly defined, although the adhesion of infected erythrocytes to the venular endothelium has been associated with some of the syndromes of severe disease. Immune responses cannot prevent the development of symptomatic infections throughout life, and clinical immunity to the disease develops only slowly during childhood. An understanding of the obstacles to the development of protective immunity is crucial for developing rational approaches to prevent the disease. Here we show that intact malaria-infected erythrocytes adhere to dendritic cells, inhibit the maturation of dendritic cells and subsequently reduce their capacity to stimulate T cells. These data demonstrate both a novel mechanism by which malaria parasites induce immune dysregulation and a functional role beyond endothelial adhesion for the adhesive phenotypes expressed at the surface of infected erythrocytes.  相似文献   

20.
Plasmodium falciparum infected erythrocytes containing mature trophozoites and schizonts sequester along venular endothelium and are not in the peripheral circulation of patients with malaria. Knobs appear on infected erythrocytes and are the points of attachment to endothelium. Sequestration may protect the parasite from splenic destruction and may play a role in the pathogenesis of cerebral malaria. Correlates of sequestration have been developed in vitro using cultured human endothelium and an amelanotic melanoma cell line. Knobless strains (K-) of P. falciparum fail to sequester in vivo and to bind to cells in vitro. We now present evidence that the receptor for cytoadherence is the glycoprotein, thrombospondin. Aotus monkey or human erythrocytes containing knobby (K+) but not Aotus erythrocytes containing knobless strains of P. falciparum bind to immobilized thrombospondin. Neither binds to the adhesive proteins laminin, fibronectin, factor VIII/von Willebrand factor or vitronectin. Both soluble thrombospondin and anti-thrombospondin antibodies inhibit binding of parasitized Aotus erythrocytes to immobilize thrombospondin and to melanoma cells which secrete thrombospondin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号