首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
对八个含有正交异性钢桥面板角钢纵肋现场对接的试件进行了静力和疲劳试验研究,纵助接头采用手工仰焊,考虑了纵肋对中偏差.试验结果表明纵肋对中偏差对接头的疲劳性能有重要影响,经回归分析得到的疲劳强度曲线可达到我国钢结构设计规范GBJ17——88的第四类.正交异性钢桥面板纵肋现场对焊接头的疲劳性能@童乐为@沈祖炎  相似文献   

2.
正交异性钢桥面板的结构分析   总被引:19,自引:0,他引:19  
在具有相同截面面积的开口纵肋和闭口纵肋钢徘同板静力试验的基础上,提出简化的计算模型,并采用有阴元法进行精确的应力分析,计算结果与试验结果符合良好;系统地论述了正交异性钢徘同板弹性阶段的应力特性,着重研究了构造布置对铺装应变的影响,从而对铺装提出合理可行的建议。  相似文献   

3.
目的以港珠澳大桥钢箱梁为例,在面板上增加一层超高性能混凝土形成钢-UHPC组合桥面板,分析超高性能混凝土层对钢桥面板各细节疲劳性能的影响.方法利用有限元软件ABAQUS建立带UHPC铺装层和不带铺装层的局部钢箱梁节段模型.结果对于加了UHPC铺装层的正交异性钢桥面板,纵肋与盖板连接处盖板纵向处的最不利细节横向位置及对应的最不利横向加载点均未发生变化;纵肋与盖板连接处纵肋纵向处、纵肋与横隔板连接处纵肋腹板处和纵肋与横隔板连接处横隔板腹板处的最不利细节横向位置未发生变化,但其对应的最不利横向加载点发生变化;横隔板腹板切口自由边和纵肋下缘对接焊缝处的最不利细节横向位置及对应的最不利横向加载位置均发生了变化.结论 UHPC层大幅度增加了钢桥面板的刚度,进而大大降低了各疲劳细节的应力幅水平,减少了各细节发生疲劳开裂的几率.  相似文献   

4.
为研究桥面细部构造和桥面铺装对正交异性钢桥面板力学性能的影响,确定合理的构造,以梯形及矩形截面形状的纵向加劲肋与多种缺口形式的横隔板相组合形成正交异性钢桥面板结构体系,并铺设不同厚度、不同弹性模量的沥青混凝土铺装层,建立相应的有限元实体模型进行加载,分析纵向加劲肋截面形状、横隔板缺口形式及铺装层弹性模量和厚度对正交异性钢桥面板力学性能的影响规律。结果表明:加劲肋上口间距越小,改善桥面板受力性能越明显,其中加劲肋B(梯形加劲肋侧板与底板采用圆弧连接)受力性能较好,且用料少;缺口Ⅰ、缺口Ⅲ的应力集中情况好于缺口Ⅱ,因此应合理选用缺口Ⅰ和缺口Ⅲ,但缺口Ⅲ需要优化;顶板与纵向加劲肋连接处应力高,为力学性能敏感区域;铺装层弹性模量增加,钢桥面板最大主应力减小,铺装层厚度增加,钢桥面板和沥青表面最大主应力均减小,因此铺装层弹性模量与厚度要综合设计,以使钢桥面板受力性能最优。  相似文献   

5.
正交异性钢箱梁桥面第二体系结构优化设计   总被引:12,自引:1,他引:11  
在力学分析的基础上,建立了正交异性钢箱梁桥面铺装体系的力学模型,通过有限元计算,研究了正交异性钢桥面板铺装体系的力学特性。从铺装层厚度、材料、横隔板间距、钢板厚度以及梯形加劲肋刚度等方面,探讨了在弯沉值、应力、应变等约束条件下正交异性钢箱梁桥面第二体系的优化设计方法,给出了正交异性钢桥板各个参数的合理数值界限,将本文的结果与已建成的同类型桥相比较可知,本文的设计结果合理,可作为大跨径钢箱梁桥面板的依据。  相似文献   

6.
T形肋正交异性组合桥面板力学性能   总被引:2,自引:1,他引:2  
为了检验所提出的T形肋正交异性组合桥面板在局部车轮荷载作用下的受力特性及这种桥面板在桥梁第二体系中的受力性能,并区分其与常规桥面板的受力性能,设计制作了4个不同桥面板试件,其中包括一个混凝土桥面板,一个正交异性钢桥面板,两个不同尺寸的T形肋正交异性组合桥面板.通过静力试验测试了不同桥面板在荷载作用下负弯矩区混凝土开裂情况、桥面板不同部位的结构应变和变形等.试验结果表明T形肋正交异性组合桥面板在车轮荷载作用下其局部应力水平显著低于正交异性钢桥面板,相同宽度的T形肋正交异性组合桥面板其极限抗弯承载力分别是混凝土桥面板和钢桥面板的2.30倍和1.57倍以上,表明T形肋正交异性组合桥面板具有较强的抗疲劳性能.  相似文献   

7.
钢桥面板纵肋现场对焊接头的疲劳性能   总被引:6,自引:0,他引:6  
对8个具有正交异性钢桥面板角钢纵肋现场对焊接头的试件进行了静力和疲劳试验研究,纵肋接头采用手工仰焊,考虑了纵肋对中偏差.试验结果表明纵肋对中偏差对接头的静力和疲劳性能有重要影响,经回归分析得到了疲劳强度曲线,为钢桥面板这类接头的疲劳设计提供了依据.  相似文献   

8.
重庆两江大桥正交异性钢桥面板疲劳性能试验研究   总被引:1,自引:0,他引:1  
为评估重庆两江大桥正交异性钢桥面板双向荷载下的疲劳性能,对由盖板、板肋和横隔板组成的箱形正交异性钢桥面板模型进行疲劳试验研究和有限元分析.采用应力等效方法,板肋与横隔板交叉细节部分采用1∶1足尺模型,横隔板开孔分别采用苹果形和钥匙形,面内和面外双向疲劳加载完成正交异性板结构设计寿命期及超长服役期的等效实桥疲劳应力幅作用下2 000万次疲劳试验.有限元值和实测值较吻合.在疲劳试验基础上,讨论横隔板开孔边缘、纵肋与横隔板焊接以及纵肋与盖板焊接3个关键部位的疲劳性能.研究结果表明:双向荷载作用下横隔板产生面外弯曲变形,易导致面外疲劳;正交异性钢桥面板构造未发现裂纹,疲劳寿命远超过设计寿命期.根据欧洲规范的疲劳等级分类检算,其疲劳强度满足使用要求.  相似文献   

9.
为验证有效缺口应力法在正交异性钢桥面板疲劳评价中的适用性,开展了横隔板弧形切口2种不同过渡形式的局部应力研究.采用Ansys分别计算U肋与横隔板连接处焊趾和焊根处的有效缺口应力,并加以比较,表明焊趾处更易萌生裂纹.采用S-N曲线评估其疲劳寿命,表明有效缺口应力法可以应用于正交异性桥面板的疲劳评价.有限元分析假定缺口的真实半径为0,这可能导致试验结果的保守性.基于不同U肋厚度的比较,发现U肋厚度的增加将导致U肋与横隔板端焊缝处更易产生疲劳裂纹.相关研究结果可为正交异性钢桥面板的设计和疲劳评价提供参考.  相似文献   

10.
正交异性钢桥面板静力试验和有限元分析   总被引:14,自引:0,他引:14  
在研究正交异性钢桥面板疲劳性能之前,对一个具有角钢枞肋的大型钢桥面板模型进行了静力试验和有限元分析,分析结果与试验结果符合得很好,从而实全面地了解钢桥面板各个部位的应力分布状况,为以后该模型的疲劳试验结果分析提供了有利条件。  相似文献   

11.
目的研究沥青混凝土桥面铺装对正交异性钢桥面板疲劳性能的影响,提出合理的铺装层厚度与弹性模量.方法建立正交异性钢桥的有限元模型,并与试验结果进行对比,验证正交异性钢桥有限元模型及其边界条件的有效性;选取易产生疲劳裂缝4个典型位置的构造细节进行有限元分析,从而找到桥面铺装层厚度、弹性模量等铺装层参数对正交异性钢桥面板疲劳细节处应力幅的影响趋势;验算疲劳细节应力幅值是否小于《公路钢结构桥梁设计规范》(JTG D64—2015)中疲劳S-N曲线中相应疲劳细节的200万次循环疲劳强度35 MPa.结果当铺装层厚度自60 mm增加到100 mm时,疲劳细节的等效应力幅值逐渐下降,且呈线性递减趋势;铺装层厚度为70 mm时,其弹性模量应不小于5 000 MPa为宜;当其模量自1 000 MPa增加到10 000 MPa时,不同疲劳细节的等效应力幅值呈非线性下降趋势.当其模量增加到8 000 MPa时,疲劳细节的等效疲劳应力幅趋于稳定;铺装层材料的模量为3 000 MPa时,其铺装层厚度应不小于80 mm为宜.结论 4种疲劳细节中,与钢桥面板接触的疲劳细节其疲劳性能受铺装层厚度、铺装层模量影响比其他疲劳细节大.桥面铺装层能有效地降低疲劳细节的等效疲劳应力幅,改善正交异性钢桥面板的疲劳性能.  相似文献   

12.
通过带桥面铺装的正交异性钢桥面板足尺模型疲劳试验,实测了不同桥面铺装温度条件下钢桥面板的受力,分析了桥面铺装温度对钢桥面板疲劳损伤度的影响.结果表明:沥青混合料钢桥面铺装刚度随着温度升高迅速降低,导致铺装层下的正交异性钢桥面板受力迅速增加;在相同的荷载条件下,高温(55℃)条件下钢桥面板疲劳损伤度约为常温(10℃)的21倍.  相似文献   

13.
钢桥面板厚度小,铺装层的相对刚度较大,钢桥面板疲劳设计时,应该考虑铺装层与钢桥面板的共同作用。假设桥面铺装与顶板没有相对滑移,采用有限元方法探讨了桥面铺装弹性模量和厚度对正交异性钢桥面板疲劳应力幅的影响。  相似文献   

14.
为了检验所提出的开口U形肋组合桥面板在桥梁使用中的受力性能,并区分其与常规桥面板的受力性能,设计制作了3个不同桥面板试件,其中包括1个混凝土桥面板、1个正交异性钢桥面板、1个带U形肋组合桥面板.通过静力试验测试了不同桥面板在荷载作用下负弯矩区混凝土开裂情况、桥面板不同部位的结构应变和变形、极限承载力等.试验结果表明,在车轮荷载作用下,开口U形肋组合桥面板的应力远远低于正交异性钢桥面板的应力,避免了桥面板钢结构疲劳的发生;在重量比混凝土桥面板小57%的情况下,组合桥面板的承载力是混凝土桥面板的1.42倍;在用钢量约为钢桥面板1/2的情况下,二者的承载力相当.  相似文献   

15.
针对正交异性钢桥面板存在的桥面铺装破损及钢桥面疲劳开裂这一系列问题,以长期被该病害困扰的天津海河大桥为研究对象,分析此类病害的分布特征及产生机理;根据病害形成的原因提出采用超高性能混凝土铺装层(UHPC)与钢桥面通过剪力钉形成组合结构的加固方法,并将该方法首次应用于大跨径斜拉桥的加固;基于有限元计算和加固前后实桥比对试验,对UHPC层及桥面板关键部位应力情况进行分析,并连续2年对加固后桥梁的状况进行监测。研究结果表明:桥梁病害产生的主要原因是自身刚度不足,在重载车辆的长期作用下出现疲劳开裂;采用UHPC铺装加固后,钢桥面转变成钢-UHPC组合桥面,可大幅度提高桥面板整体刚度,其受力状态得到明显改善,钢箱梁U肋、横隔板、顶板在标准车荷载下的应力分别降低52.7%、39.2%、28.3%,UHPC铺装加固能有效抑制疲劳裂缝的产生和发展,UHPC材料的抗拉强度能满足活载作用下最大拉应力的要求;在重载交通的运营状况下桥面铺装依旧完好,钢箱梁无新增裂缝。采用UHPC铺装加固正交异性钢桥面板在改善其受力状况方面具备优越性和技术可行性。  相似文献   

16.
钢-UHPC轻型组合桥面板实桥试验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
钢-UHPC轻型组合桥面板是一种由正交异性桥面与密集配筋的UHPC薄层通过剪力钉连接而成的新型桥面结构.为研究UHPC层对钢-UHPC轻型组合桥面结构性能的影响,以枫溪大桥为工程背景,研究正交异性钢桥面常见疲劳细节在铺设UHPC层前、后的应力幅变化.首先通过整体有限元模型确定测点位置以及加载范围,然后根据加载方案分别在铺设UHPC层前后采用三轴加载车进行低速加载试验,同时采集并整理正交异性钢桥面常见疲劳细节应力响应试验数据,最后建立了节段有限元模型并与实测结果进行对比分析.试验结果表明:铺设UHPC层后,常见疲劳细节应力响应均有明显降低,其中面板上的细节(纵肋-面板焊缝、面板对接焊缝、面板-横隔板-纵肋交叉焊缝面板位置)应力幅降幅比例最大,高达75%~90%;其次为纵肋上疲劳细节(纵肋底部对接焊缝、纵肋-横隔板焊缝焊缝端部位置、面板-横隔板-纵肋交叉焊缝纵肋位置)应力降幅约为65%~80%;最后为横隔板上疲劳细节(横隔板弧形切口、横隔板弧形切口起点位置、面板-横隔板-纵肋交叉焊缝横隔板位置)应力降幅约为20%~50%.同时,随疲劳细节与顶面距离的减小,UHPC层对细节应力降幅的贡献明显增大.有限元模型结果与实测结果吻合较好,也得出了相似的规律.本文实测结果为推广钢-UHPC轻型组合桥面的应用提供了最直接的数据参考.  相似文献   

17.
为了研究钢纤维混凝土作为刚性铺装对正交异性钢桥面板受力性能的改善,设计制作了1个正交异性钢桥面板试件及1个带刚性铺装的钢桥面板试件。通过静力试验,考察了桥面板在车轮荷载作用下结构的受力性能,测试了桥面板不同部位的结构应变和变形。试验结果表明:采用钢纤维混凝土作为刚性铺装,能显著改善在车轮荷载作用下钢桥面板焊缝附近的疲劳性能,可以大大减小桥面板发生疲劳破坏的可能性;采用适当连接件的刚性铺装可以提高桥面板的刚度。  相似文献   

18.
当两轮胎分别作用于肋缘两侧或双轴荷载分别作用于横隔板两侧时,支撑顶部的桥面铺装层将产生应力集中现象.根据线弹性理论和层状体系理论,采用有限元法计算分析了这一特定结构的受力现象.计算结果表明,增加钢桥面板厚度可以适度缓解骑撑效应导致的铺装层应力集中现象.因此建议正交异性钢桥面板的厚度应采用14 mm为宜.  相似文献   

19.
石鹏  程斌 《科学技术与工程》2016,16(5):104-109,115
盖板-U肋-横隔板三向连接节点是正交异性钢桥面板中最容易发生疲劳开裂的部位。采用ABAQUS软件建立了四跨连续正交异性钢桥面板结构的实体与板壳混合有限元模型。利用AASHTO标准疲劳车开展静力响应分析。发现最外侧U肋处的连接节点应力集中最为明显。在此基础上开展在单轮和横向双轮作用下各关键位置正应力的纵、横向影响线分析,并最终得到了后轴四轮同时作用的最不利荷载位置。进一步基于外推法对各疲劳易损区焊趾处的热点应力进行计算和分析,得到了相应的应力集中系数。结果表明:U肋外推区的应力分布比较符合线性外推准则,但横隔板外推区的应力呈现明显的非线性变化,建议采用二次外推方法。  相似文献   

20.
钢桥面铺装开裂破坏是沥青铺装最典型的病害类型,铺装层开裂不仅仅影响到钢桥面铺装层路用性能,而且对钢桥面板的受力也相当不利.本文采用ANSYS通用有限元软件,建立了典型的正交异性钢桥面板结构以及其上的ERS铺装体系的有限元模型,研究车轮荷载作用下表层裂缝对钢桥面铺装体系受力性能的影响,并进一步分析裂缝宽度对钢桥面铺装体系主要受力指标的影响.结果表明裂缝对与其垂直方向的应力影响较大,而对平行方向的应力影响较小,裂缝宽度对各项应力的敏感性影响较高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号