首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
以山东省自然保护地为研究对象,系统分析了自然保护地内不同生态系统的碳汇功能及其差异性,并针对碳汇价值实现路径进行了探索研究。结果表明,山东省自然保护地的碳汇总量为2.99×106 t/a,其中森林生态系统碳汇最高(1.20×106 t/a),随后依次为农田生态系统(9.09×105 t/a)、近海生态系统(5.22×105 t/a)、滨海湿地生态系统(2.27×105 t/a)、内陆湿地生态系统(1.28×105 t/a)、草地生态系统(0.04×104 t/a),其碳汇总价值为1.23×109元,单位面积碳汇价值为7.61×103元/hm2。鉴于自然保护地的碳汇价值,本研究从基于自然保护地生态补偿的角度对碳汇价值实现路径进行了讨论分析,提出了碳交易与生态补偿相结合的框架体系。  相似文献   

2.
滨海蓝碳是指红树林、盐沼和海草床等滨海湿地生态系统植被固定的二氧化碳(CO2)。发展滨海蓝碳是缓解气候变暖的全球战略之一,在海岸带保护、管理和恢复中具有潜在意义。我国滨海湿地面临的人为干扰,如海堤的挤迫、富营养化和城市化等,改变了生态系统的结构和功能,限制了生态系统固碳功能。由于我国滨海湿地的碳储量和碳汇研究缺乏系统观测,现有估算还有很大数据缺口。因此,本文对滨海蓝碳的定义和应用、我国滨海湿地的分布现状及其储碳、固碳特征进行系统梳理,并从滨海湿地保护和修复的国家需求、碳中和(Carbon Neutrality)的国家战略出发,提出研究我国滨海湿地储碳和碳汇能力及其时空演变规律的重要意义。  相似文献   

3.
海南岛中部山区土地利用变化对碳储量时空分异的影响   总被引:1,自引:0,他引:1  
【目的】研究海南岛中部山区土地利用变化与生态系统碳储量之间的时空变化规律,为区域可持续发展及国土空间规划决策提供依据。【方法】采用InVEST模型估算2000—2018年海南岛中部山区碳储量及其时空分异,结合PLUS模型模拟2050年中部山区土地利用及碳储量变化。【结果】2000、2010和2018年海南岛中部山区的碳储量分别为80.44×106、79.96×106和79.82×106t,呈逐年减少趋势,累计减少620 406.31 t。各时期碳储量降低的原因不同:2000—2010年草地的转出是中部山区碳储量减少的主要因素;2010—2018年碳储量减少的原因在于城镇化扩张侵占林地及耕地。林地作为主要地类,贡献大部分的碳储量,是中部山区碳汇的主要来源;同时,草地碳密度远高于其他地类,区域碳储量对其变化较为敏感。基于自然发展状态下的模拟发现,2050年海南岛中部山区的碳储量显著下降,原因在于建设用地和水域面积增加及林地、草地和耕地面积减少。【结论】在城镇化扩张的背景下,生态系统碳储量存在不断下降的风险。未来国土空间规划应...  相似文献   

4.
探究池州市土地利用及碳储量时空变化,对合理利用土地、土地规划与开发及减少碳排放提升生态环境质量具有重要意义。以2000—2020年池州市土地利用类型为数据源,基于PLUS模型预测2030年土地利用分布数据,分析30年间池州市各土地利用类型变化趋势,并运用In VEST模型计算不同时期碳储值,分析池州市碳储量的时空变化。结果表明:2000—2030年池州市的土地利用变化显著,耕地、水域、人造地表面积总体呈增加趋势,林地、草地、未利用地呈减少趋势,其中人造地表面积增加最多,增加了154.02 km2,林地面积减少最多,减少了200.35 km2;池州市碳储量呈先下降后升高趋势,总体为减少趋势,共减少了4.85×106t;4个时期林地和耕地的碳储量占比最高,林地转出使得碳储量减少1.46×107t,耕地转出增加了4.67×106t。2000—2030年池州市土地利用类型发生显著变化,各地类之间的相互变化影响着碳储量的变化,应加强生态环境保护提高生态系统的固碳能力。  相似文献   

5.
【目的】对浙江省温州市森林生态系统碳储量进行研究,摸清区域森林碳储量现状,为区域碳汇功能的评价提供基础数据。【方法】基于温州市2018年森林资源年度监测的马尾松林、其他松林、杉木林、柳杉林、柏木林、硬阔林、针叶混交林、阔叶混交林、针阔混交林、毛竹林等10种主要类型的森林资源监测数据,以及30个调查样地的实测数据,用平均生物量转换因子法计算不同森林类型的碳储量和碳密度,同时采用Pearson相关分析法对不同森林生态系统各组分之间有机碳储量进行相关性分析。【结果】2018年,温州市森林生态系统碳储量为81.70 Tg, 其中乔木层18.46 Tg,灌草层1.55 Tg,凋落物层1.02 Tg和土壤层60.67 Tg,分别占生态系统碳储量的22.60%、1.89%、1.25%和74.26%。温州市的森林生态系统碳密度为123.81 t/hm2,其中乔木层27.98 t/hm2,灌草层2.34 t/hm2,凋落物层1.54 t/hm2和土壤层91.95 t/hm2,土壤有机碳库为植被有机碳库的2.88倍。乔木层和土壤层有机碳储量是温州市森林生态系统的主要碳库,占全部森林生态系统有机碳储量的96.86%。乔木层碳密度最大的是柏木林,达到46.06 t/hm2;阔叶混交林碳密度最低,为20.50 t/hm2;土壤层中,碳密度最大的为柳杉林,达到136.97 t/hm2;最小的为其他松木林,为49.38 t/hm2。不同林分生态系统碳密度有一定差异,其中柳杉林碳密度最大(185.42 t/hm2),最低的是马尾松林(83.34 t/hm2)。各组分碳储量相关性分析表明,乔木层与凋落物层碳储量呈显著正相关关系(P<0.05),土壤层碳储量与森林生态系统碳储量呈极显著相关关系 (P<0.01),说明土壤层对整个生态系统碳储量的贡献最大。其他各组分之间相关关系均达不到显著水平。【结论】温州市森林生态系统碳密度略高于浙江省平均水平,但是低于全国平均水平,因此可以通过合理的森林经营管理措施提高森林碳密度。  相似文献   

6.
扎龙湿地生态环境需水量研究   总被引:25,自引:2,他引:23  
通过对湿地不同类型生态环境需水量的探讨, 核算了扎龙湿地湖泡、 植物、 土壤以及野生生物栖息地等生态环境需水量, 得出扎龙湿地生态环境需水量为5.09× 108 m3, 其中核心区(最小生态环境需水量)为2.00×108 m3.  相似文献   

7.
该文以鄱阳湖国家级湿地自然保护区的泗洲头、常湖池以及蚌湖季节性淹水湿地为研究对象,选择典型湿地植被芦苇(Phragmites australis)、苔草(Carex spp)和南荻(Triarrhena lutarioriparia),基于DNDC模型模拟和预测不同湿地植被下表层(0~20 cm)土壤有机碳含量(mSOC)动态变化,估算土壤碳储量和CO2的年排放量.结果表明:DNDC模型能够准确模拟研究区不同典型植被下的mSOC动态变化,δRSME<30%,R2>0.9.敏感性分析显示:影响mSOC动态变化的敏感因素是初始土壤有机碳和黏粒含量.常湖池、蚌湖和泗洲头土壤平均有机碳密度分别为36.71、17.12和11.47 t·hm-2,土壤碳储量分别为8 738、66 090和21 174 t,常湖池具有较大的碳储量.苔草、南荻和芦苇平均土壤碳密度分别为21.96、21.86、15.98 t·hm-2,土壤碳储量分别为933 928、62 933、166 458 t,苔草固碳能力巨大.基于DNDC模型模拟预测表明:在未来120年内研究区不同植被类型土壤有机碳含量将呈稳定下降趋势.  相似文献   

8.
根据黑河市森林调查的实测数据和1971—2011年间森林火灾的统计资料,采用地理信息系统(GIS)技术,通过大量野外火烧迹地的调查,结合实验室的控制实验,确定森林火灾碳排放的各计量参数,并利用排放因子的方法,估算了黑河市41年间森林火灾碳排放量和含碳气体排放量。结果表明:41年间黑河市森林火灾碳排放量为4.00×107 t,年均排放量为9.76×105 t,约占全国年均森林火灾碳排放量的8.63%; 含碳气体CO2、CO、CH4和非甲烷烃(NMHC)的排放量分别为1.24×108、6.51×106、4.30×105和3.47×105 t,年均排放量分别为3.01×106、1.59×105、1.05×104和8.46×103 t,分别占全国年均森林火灾各含碳气体排放量的7.42%、5.86%、9.37%和7.49%。研究发现针阔混交林型的森林火灾面积占总过火林地面积的42.73%,由于该林型燃烧效率较低,其森林火灾中的碳排放量仅占排放总量的29.61%,且CO2的排放因子较低,其CO2排放量仅占CO2总排放量的30.11%。同时研究表明,黑河市年均碳排放对该市的碳循环与碳平衡产生重要影响,针对研究结果提出了合理的林火管理路径。  相似文献   

9.
根据重庆市2002年森林资源二类调查资料和重庆市2008年森林工程总体规划,估测出了重庆市森林植被的碳储量和碳汇量,并分析其地理分布情况和市域内不同林分的碳汇能力,对重庆市森林工程的碳汇潜力进行了预测.结果表明:重庆市(2002年)森林植被碳储量约为4 729万t,每年固定约397万t碳,折合1 454万t二氧化碳;重庆市东部地区的碳储量普遍高于西部地区,在各区县中碳储量排在前五位的分别是城口、巫溪、酉阳、石柱、奉节;重庆市域不同林分中,以马尾松的碳汇量最大,占重庆市总碳汇量的60%,其次是栎类,冷杉最少;重庆市森林工程造林成林后的森林碳汇价值高达36.65亿元/年,具有很大的碳汇潜力.  相似文献   

10.
2002-2010年中国陆域植被净初级生产力模拟   总被引:1,自引:0,他引:1  
基于时间序列MODIS数据和气象数据驱动遥感NPP模型,模拟了2002-2010年的中国陆域植被净初级生产力.采用了重建后的NDVI数据作为模型输入,对不同类型NDVI序列数据的比较发现,重建后的NDVI数据有效地校正了时序MODIS NDVI数据集中的噪声,有助于提高模型模拟的精度.模拟结果表明,中国陆域生态系统净初级生产力的空间分布格局呈现出明显的地带性分异特征.2002-2010年中国陆域植被的年总初级生产力约为3.78×1015gC/a,春、夏、秋季的植被NPP均值分别为6.40×1014,1.59×1015,8.10×1014gC/a.  相似文献   

11.
针对湿地生态健康评价中的鸟类承载力评估问题,建立底栖动物去灰分干重(AFDW)的换算方法, 优化湿地鸟类体型分类标准。以深圳湾福田红树林湿地为例, 通过计算底栖动物总资源量、可支持水鸟总热值和水鸟种群的野外代谢率, 评估福田红树林湿地的水鸟承载力。结果表明: 1) 福田红树林湿地底栖动物的总资源量具有明显的季节特征, 冬季(4.67×104kg)<春季(6.08×104 kg)<夏季(8.00×104 kg)<秋季(1.23×105 kg), 以秋季为例, 不同生境的单位面积资源量为红树林植被区(89.22 g/m2)>滩涂区(3.58 g/m2)>基围鱼塘区(0.22 g/m2); 2) 湿地不同季节可支持水鸟的总热值为冬季(1.03×108 kJ)<春季(1.36×108 kJ)<夏季(1.76×108 kJ)<秋季(2.70×108 kJ); 3) 福田红树林湿地水鸟种群野外代谢率为467.27 kJ/d; 4) 秋季、冬季和春季是候鸟迁徙期, 福田红树林湿地对水鸟的承载力分别为6431, 2438和3235只, 而实际观测数据高于研究结果, 说明当前福田红树林湿地对水鸟的承载力不足, 不能满足候鸟迁徙季节的鸟类食物需求, 湿地水鸟可能存在数量下降的风险。建议从加强红树林的保护与恢复重建、开展基围鱼塘生态修复和功能提升工程、强化鸟类和底栖动物的动态监测3个方面, 继续加大对福田红树林湿地的生态保护力度, 以期提高底栖动物总资源量, 进而提升红树林湿地的鸟类承载力。  相似文献   

12.
【目的】根据福建省森林资源清查数据,估算天然乔木林的生物量碳库及其变化,并提出增汇策略,为天然林的固碳能力提升和科学经营管理提供依据。【方法】基于福建省2003—2018年4次森林资源清查数据,采用生物量转换因子连续函数法,结合主要林分组含碳率、根冠比,估算福建省天然乔木林碳储量变化和碳密度。【结果】福建省天然乔木林碳储量由2003年的156.11 Tg增加到2018年的248.68 Tg,年均增长率为3.15%;碳密度由2003年的47.30 Mg/hm2增加到2018年的76.24 Mg/hm2,年均增长1.93 Mg/hm2。天然乔木林碳储量以阔叶类树种(含针阔混交林)占主体,4个清查时期占比均超过70%,最高达86.47%。2003—2018年,天然乔木林幼龄林和中龄林面积占比58.78%~73.76%,碳储量占比50.72%~61.90%,面积和碳储量都以幼、中龄林为主,但占比均呈现明显下降趋势,且呈现碳储量占比明显低于面积占比的特征。天然乔木林碳密度随着林龄的增加呈现明显上升趋势,各林分的碳密度总体上以阔叶类高于针叶类。【结论】福建省天然乔木林碳储量呈较快增长趋势,碳密度不断提高,碳汇能力明显增强,随着天然林保护、生态修复的持续,现阶段以中幼龄林为主的天然乔木林已进入快速增长期,未来固碳潜力巨大。  相似文献   

13.
间伐对杉木人工林生态系统碳储量的短期影响   总被引:1,自引:0,他引:1  
【目的】研究不同间伐强度下杉木人工林生态系统碳储量及其分配格局,进一步优化林分经营管理措施,准确评估间伐对杉木人工林生物量和碳储量的短期影响,为提高人工林的碳汇能力提供依据。【方法】以福建省三明市官庄国有林场11年生杉木人工林为研究对象,选择坡度、坡位、土壤条件相对一致的林分,按照完全随机区组试验设计,设置弱度间伐(31%,伐后林分2 250株/hm2,LIT)、中度间伐(45%,伐后林分1 800株/hm2,MIT)、强度间伐(63%,伐后林分1 200株/hm2,HIT)等3种间伐强度;共设置9块20 m×20 m样地,采集深度为1 m剖面内不同土层的土壤;并在样地内每木检尺,利用生物量回归方程对乔木层生物量进行估算,同时实测林下植被和凋落物生物量;通过元素分析仪测定植被和土壤碳含量,并根据碳含量估算碳储量。【结果】间伐后3年,杉木人工林乔木层碳储量随着间伐强度的增加而减小,LIT、MIT、HIT处理样地乔木层碳储量依次为66.16、58.78、49.71 t/hm2;杉木人工林灌木层和草本层的碳储量随着间伐强度的增加而显著增加,分别占生态系统碳储量的0.03%~0.19%和0.01%~0.67%;凋落物层碳储量占生态系统碳储量的2.87%~4.32%,间伐对凋落物层碳储量无显著影响;土壤有机碳储量在不同间伐处理间差异显著(P<0.05),杉木人工林土壤层碳储量随着间伐强度的增加而降低,HIT处理土壤层碳储量较LIT和MIT处理降低了32.07%和1.03%。间伐后3年,杉木人工林生态系统碳储量随着间伐强度增加而显著降低(P<0.05),LIT、MIT和HIT处理样地总碳储量依次为173.85、161.12、121.73 t/hm2。乔木层和土壤层碳储量之和占比超过90.00%,表明乔木层和土壤层是巨大的碳库,且间伐短期降低生态系统总碳储量。【结论】间伐后短期内杉木人工林乔木层、凋落物层和土壤层碳储量随着间伐强度的增加而下降,而灌木层和草本层的碳储量则随着间伐强度的增加而增加,表明间伐3年后试验林地还处于恢复期,杉木人工林间伐短期内会降低生态系统总碳储量。研究结果可部分解释间伐后短期内杉木人工林生态系统各组分碳储量的分布格局,并为研究区的人工林碳汇增加和可持续经营提供科学依据。  相似文献   

14.
【目的】森林碳储量在陆地生态系统碳库中占主体地位,通过确定人工乔木林碳密度和植被固碳增值碳储量,预测人工乔木林碳汇潜力,为改善人工乔木林的林龄和树种结构、提高森林可持续经营水平,进而为提高人工乔木林单位面积蓄积量提供科学依据,助力我国实现增汇减排的目标。【方法】比较分析我国第8次(2009—2013)和第9次(2014—2018年)森林资源清查中各优势树种人工林的面积和蓄积量数据,采用联合国政府间气候变化专门委员会(IPCC)材积源-生物量法(volume-biomass methods)分别估算并对比我国6种主要树种人工乔木林的碳储量和碳密度,分析人工乔木林碳储量和碳密度在两次森林资源清查期间增值部分的碳贡献率,综合评价我国不同林龄结构人工乔木林的固碳功能;采用拟合的单位面积蓄积-林龄的Logistic回归生长方程,结合IPCC材积源-生物量法,预测不同龄级各优势树种的蓄积量,估算我国现有人工乔木林未来15年及至2035年的碳汇增值潜力。【结果】两次森林资源清查期间,我国主要人工乔木林总碳储量增加了498.81 Tg,年均增加量99.76 Tg。第9次资源清查结束时,6个主要树种不同林龄(组)人工乔木林的碳储量由大到小依次为过熟林(439.19 Tg)>成熟林(426.43 Tg)>近熟林(359.75 Tg)>中龄林(292.34 Tg)>幼龄林(105.15 Tg),分别占人工乔木林总碳储量的27.07%、26.28%、22.17%、18.02%和6.47%;不同龄组的碳密度从小到大依次为过熟林(59.17 Mg/hm2)<幼龄林(169.12 Mg/hm2)<成熟林(178.13 Mg/hm2)<近熟林(190.38 Mg/hm2)<中龄林(348.09 Mg/hm2)。到2035年,我国主要树种人工乔木林碳储量和平均碳密度将分别达到1 716.27 Tg和36.51 Mg/hm2,与2015年相比分别增加92.92%和93.17%。【结论】两次森林资源清算结果相比,6种主要树种人工乔木林的碳储量均有显著增加,随着林分的不断成熟,碳储量呈现出线性正向增加的趋势,而碳密度受蓄积量与面积比的影响其增幅各不相同;至2035年人工乔木林碳储量约占乔木林总碳储量的20%,可以预见中国人工乔木林碳储量有很大的增加潜力。  相似文献   

15.
我国杨树林的碳储量和碳密度   总被引:2,自引:0,他引:2  
利用第七次全国森林资源清查数据,使用材积源生物量法,测算我国杨树林碳储量及碳密度。结果表明:(1)我国杨树林总碳储量为261.84 Tg,碳密度为25.92 t/hm2,其中,人工林碳储量为179.22 Tg,碳密度为23.67t/hm2;天然林碳储量为82.62 Tg,碳密度为32.65 t/hm2;杨树人工林碳储量占全国乔木人工林总碳储量的15.9%。(2)北方地区杨树人工林碳储量达172.94 Tg,占杨树人工林总碳储量的96.5%,为我国杨树人工林固碳增汇集中区域;内蒙古、河南及山东杨树人工林碳储量分别为35.45、24.51、22.42 Tg,占总碳储量的55.9%,为我国利用杨树人工林固碳增汇的大省。(3)杨树中幼人工林面积达547.68万hm2,占总面积的72.3%,其碳储量达117.95 Tg,占总碳储量的65.9%,是我国杨树人工林碳汇潜力所在。因此,杨树人工林,尤其是北方地区杨树人工林,为我国利用杨树固碳增汇主要森林,也是我国北方人工林重要的碳贮库。  相似文献   

16.
【目的】探究退耕还林(草)背景下黄土高原不同坡度退耕地的固碳效应及存在的差异,根据不同坡度碳储量的变化优化新一轮退耕还林工程。【方法】基于2000—2020年黄土高原固碳数据和2000—2015年土地利用数据,运用GIS空间分析法,分析了近20年黄土高原固碳量的时空变化,以及不同坡度退耕地的碳汇效应。【结果】2000—2020年黄土高原固碳量前期增幅较大,后期增幅较平缓,固碳量变化与森林覆盖面的走向基本一致,呈现南高北低的现象;2000—2015年黄土高原土地利用结构发生明显改变,耕地显著减少,林、草地覆盖率增长至56.42%,且各土地利用类型单位面积固碳量呈增加态势,林地单位面积上固碳量最多;此外,坡度15°~25°林地单位面积上固碳量最大,约716.93 g/m2,8°~15°草地的单位面积固碳量最大,约748.65 g/m2。【结论】黄土高原退耕还林还草工程带来了巨大的碳汇效应,不同坡度林、草地的固碳能力存在明显差异,缓坡度地带草地固碳能力最强,中高坡度地带林地固碳能力最强。  相似文献   

17.
以贵州南部三州为研究区,运用连续生物量转换因子法,基于2010年森林清查小班数据,估算了2010年贵州南部森林植被净生产力,以此为基础,计算了2010年贵州南部森林生态系统固碳释氧价值量。结果显示:2010年,贵州省南部森林生态系统年固碳量861.39×104t C,年释氧量2 306.07×104t,单位面积年固碳量1.95t C/(hm2·a),单位面积年释氧量5.21t/(hm2·a);贵州省南部森林生态系统年固碳价值103.37亿元,年释氧价值230.61亿元,总价值333.98亿元;杨树单位面积固碳释氧价值最强,达到0.86万元/(hm2·a)和1.92万元/(hm2·a);柏木单位面积固碳释氧能力最弱,分别仅有0.10万元/(hm2·a)和0.23万元/(hm2·a);固碳释氧价值在空间上呈现出由西向东递增趋势,这与贵州南部的水热条件分布基本一致。  相似文献   

18.
广州市土壤与植被碳蓄积及其空间格局分析   总被引:2,自引:0,他引:2  
以广州市为研究区,在遥感与GIS技术的支持下,基于广东省第2次土壤普查数据和2000年ETM+遥感数据,提取广州市土壤数据和遥感影像数据,采用土壤类型法和植被指数法分别计算广州市的土壤与植被碳蓄积,并分析其空间格局及相关性.结果表明:1广州市土壤有机碳储量0~20 cm为2.16×107t,0~100 cm为6.40×107t;广州市土壤有机碳平均密度0~20 cm为32.06 t·hm-2,0~100 cm为94.91 t·hm-2.2广州市植被碳储量为5.75×107t,平均碳密度为160.92 t·hm-2;不同植被类型平均碳密度:针叶林(178.00 t·hm-2)阔叶林(164.68 t·hm-2)园地(106.23 t·hm-2)灌木(8.04 t·hm-2)草地(0.13 t·hm-2).3广州市土壤有机碳密度南部高于中部和北部,土壤有机碳储量则呈现北高南低的分布特征;广州市植被碳密度较高的区域位于植被保护较好的风景区和郊区,中心城区土壤有机碳库和植被碳库都较低.4土壤有机碳储量与植被碳储量在空间上具有正相关关系,植被碳储量高的区域,其土壤有机碳储量也高.表层(0~20 cm)土壤有机碳储量与植被碳储量的相关性大于深层(0~100 cm)土壤.  相似文献   

19.
以海南省屯昌县枫木林场3种林龄(幼龄林、中龄林、成熟林)的槟榔人工林为研究对象,探讨槟榔人工林地下部分0~100 cm土层中根系碳储量与土壤有机碳储量的分布特征.研究表明:0~100 cm土层中,槟榔人工林根系主要集中在表层(0~30 cm),且根系生物量随土层的加深而显著降低,表现为:成熟林(1244.26 g·m-3)>中龄林(993.26 g·m-3)>幼龄林(658.59 g·m-3);随林龄增长,根系碳储量表现为成熟林(6.23 t·hm-2)>中龄林(4.97 t·hm-2)>幼龄林(3.57 t·hm-2).不同林龄槟榔人工林的土壤有机碳(0~100 cm土层)分布表现为:随土层加深,土壤有机碳含量显著减少,不同林龄之间土壤有机碳存在差异,但不显著,其中,幼龄林的有机碳范围在2.64~21.65 g·kg-1之间,中龄林的含量范围为3.56~25.21 g·kg-1,成熟林的...  相似文献   

20.
基于森林资源二类清查数据资料,利用材积源生物量法和平均生物量法,计算新疆喀纳斯国家自然保护区内森林植被的碳储量及其空间分布。结果表明:保护区内森林植被碳储量为3.004 7 Tg,平均碳密度为49.58 Mg/hm2。不同植被类型碳储量从大到小排序为:乔木林地、灌木林地、疏林地、散生木,其中乔木林地碳储量占到森林植被总碳储量的90.18%,各乔木林地的平均碳密度为68.87 Mg/hm2。区域分布上,林分碳储量、碳密度的空间分布呈现出西南高东北低的趋势; 而保护区内成、过熟林分的碳储量共占乔木林地碳储量的79.89%,若对现有森林采取合理的经营管理,可增加其碳汇能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号