首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
利用焊接热模拟试验,采用热膨胀法研究了屈服强度1 100 MPa级超高强钢在平衡条件和焊接条件下的奥氏体化相变温度,结合OM,SEM观察和硬度检测结果,绘制出实验钢焊接条件下奥氏体连续冷却转变曲线(SH-CCT),研究了不同冷却速率下粗晶热影响区(CGHAZ)显微组织和硬度的变化规律.采用TEM观察和Lepera腐蚀,研究不同冷速下M-A组元数量、形貌和分布情况.研究结果表明,在焊接条件下,实验钢的奥氏体化温度明显高于平衡条件下的奥氏体化相变温度;随着冷却速率增大,相继发生B,B+M和M相变,硬度逐渐上升,当冷却速率达到60℃/s时,其维氏硬度最高可达HV464.当冷却速率小于10℃/s时,开始出现M-A组元,并且随冷却速率降低,M-A组元数量增加,尺寸增大.  相似文献   

2.
对C92DA帘线钢进行连续冷却转变曲线测定,观测其热处理后的室温相组织和维氏硬度,研究控冷工艺及奥氏体化温度对C92DA钢组织性能的影响。结果表明,使C92DA钢获得最佳组织性能的控冷速率为10℃/s,奥氏体化温度为900℃;C92DA钢珠光体转变温度随冷却速率增大而降低,转变时间随冷却速率增大而缩短;C92DA钢珠光体片层间距随冷却速率增大而减小,片层排列方向趋于紊乱。  相似文献   

3.
利用热模拟试验测定耐火钢Q420FRE在不同焊接热循环下的热膨胀曲线,结合显微组织观察及硬度测试结果,绘制其焊接热影响区的连续冷却转变(SH-CCT)曲线,分析t_(8/5)(从800℃到500℃的冷却时间)对试验钢组织、硬度及相转变速率的影响。结果表明,在较大的t8/5范围内,Q420FRE钢热影响区组织均以贝氏体为主,硬度(HV0.2)变化范围为185~208,与母材基本相当;试验钢具有较高的贝氏体转变温度,随着t8/5的减小(除50、80s外),即冷却速率的增加,贝氏体相变开始温度和结束温度逐渐降低,相变速率增大,相变温度区间变化不明显;当t_(8/5)为50、80s时,相变速率有所降低,相变温度区间稍有增大。  相似文献   

4.
利用Gleeble 3800热模拟实验机、透射电镜和纳米压痕仪器等研究了终冷温度和保温时间对Nb-Ti微合金钢组织、析出行为的影响规律.结果表明:随终冷温度的升高,铁素体晶粒尺寸增大,珠光体增多,贝氏体逐渐减少,维氏显微硬度随终冷温度先升高后降低,当终冷温度为640℃时,实验钢的维氏显微硬度最大;当终冷温度为640℃时,试样中存在排列规则的相间析出和弥散分布的随机析出两种析出形式.当保温时间为0s时,析出物以相间析出和弥散析出为主;当保温时间为100s时,析出物以弥散析出为主.随保温时间增加,实验钢的纳米硬度降低了140MPa.  相似文献   

5.
将U75V 60 kg/m重轨试样加热至900℃,保温50 min后,用压缩空气对轨头表面进行强制冷却50~90 s,研究U75V 60 kg/m重轨热处理硬化层与冷却时间之间的关系.研究结果表明:热处理过程中,冷却时间大于80 s时,轨头中心表面自回火温度低于在该冷却速率下珠光体转变终止温度,珠光体相变完成;重轨热处理后硬化层组织为细珠光体,随着冷却时间的增加,珠光体平均片层间距减小,但趋势放缓,当冷却时间为90 s,离轨头中心表面3 mm处珠光体平均片层间距约为83 nm;随着冷却时间的增加,硬化层厚度增大,硬度、抗拉强度、伸长率及冲击韧性提高,当冷却时间大于80 s时,性能趋于稳定.  相似文献   

6.
研究了22Mo B高强钢在805℃、900℃和1 100℃加热后连续冷却条件下的组织与硬度。研究结果表明,随着加热温度的升高,钢的组织逐渐粗大,不同加热温度的样品在冷却速度大于30℃/s时的获得完全马氏体组织,冷却速度小于30℃/s时获得铁素体+贝氏体组织。采用900℃加热试制了U形件,样品力学性能满足热成形钢的要求。  相似文献   

7.
在Gleeble-1500热模拟试验机上,测定Nb-B系高强度集装箱钢板材料的动态连续冷却转变曲线(动态CCT曲线),研究冷却速度对材料组织及硬度的影响.结果表明,在试验的冷却速度范围内,相变产物均含有贝氏体组织.当冷却速度小于1 ℃/s时,相变产物含有一定量的多边形铁素体和准多边形铁素体及少量粒状贝氏体;冷却速度等于1 ℃/s时,相变产物含有一定量的准多边形铁素体,但大部分为粒状贝氏体;冷却速度为3、5、10 ℃/s时,相变产物全部由粒状贝氏体组成;冷却速度为15 ℃/s时,相变产物中明显出现板条贝氏体;冷速为20、30 ℃/s时,相变产物板条特征越来越明显.  相似文献   

8.
以中碳耐磨钢为研究对象,通过热膨胀法测定了中碳耐磨钢CCT曲线,分析了动态冷却条件下其组织变化,结果表明当冷速小于5℃/s时得到的组织为铁素体+贝氏体,随着冷速的增加铁素体的数量减少,当冷速达到10℃/s时得到的组织为贝氏体组织,随着冷速的增加贝氏体的形态由粒状贝氏体逐渐转换为板条贝氏体,当冷却速度在15℃/s~50℃/s之间时得到的组织为贝氏体+马氏体的组织。当冷速大于30℃/s的时候发生马氏体转变,生成的组织主要为马氏体组织。建议直接淬火工艺冷却速度15℃/s,冷却开始温度应该在800~850℃左右,而冷却结束温度在400~450℃左右。  相似文献   

9.
为揭示超快冷对含Nb钢相变行为的影响机制,利用MMS-300热/力模拟试验机研究超快冷+层流冷却条件下含Nb钢的相变行为。研究结果表明:实验钢于680℃处于铁素体相变区;当冷却速度大于20℃/s时,实验钢于600℃处于针状铁素体和贝氏体相变区。实验钢变形后冷却至铁素体相区后,随着保温时间的延长,铁素体含量逐渐增加;当保温时间超过76.5 s时,超快冷工艺下的铁素体含量高于层流冷却工艺下的铁素体含量。当前段冷却速度达到30℃/s时,组织中出现硬相组织,继续增大冷却速度,对最终相变组织影响不大。  相似文献   

10.
用膨胀法结合金相与硬度分析研究了一种新型水轮机叶片用V、N微合金化CrNiMo不锈钢的连续冷却转变行为,获得了该钢的连续冷却转变(CCT)曲线及不同冷却条件下的显微组织和硬度。结果表明,试验用钢的1、3、和温度分别为580℃、730℃、295℃和190℃,其贝氏体和铁素体分别在冷速小于0.5和0.2℃/s时出现,冷速在0.056~0.5℃/s之间时,硬度随着冷速的增大迅速增加,尔后随着冷速的增大,硬度缓慢升高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号