首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了研究Ba_(1-x)Nd_(2x/3)TiO_3纳米管的铁电性能,以阳极氧化法制备所得Ti O2纳米管为模板,采用水热法在不同Nd(NO_3)_3浓度和不同水热温度下制备出掺钕BaTiO_3纳米管,并利用扫描电子显微镜(SEM)、X线衍射仪(XRD)和铁电分析仪对样品的表面形貌、微观结构和铁电性能进行分析.实验结果表明:较高的Nd(NO_3)_3掺杂浓度和水热反应温度均有利于TiO_2纳米管向Ba_(1-x)Nd_(2x/3)TiO_3纳米管的转变,从而提高Ba_(1-x)Nd_(2x/3)TiO_3纳米管的结晶度.Nd(NO3)3浓度为0.010 mol/L、水热温度为200℃条件下所得Ba_(1-x)Nd_(2x/3)TiO_3纳米管的表面形貌最好,且其电滞回线具有良好的滞后性,表明样品具有优良的铁电性能,剩余极化强度Pr达到0.82μC/cm2,矫顽场Ec为2.390 k V/cm.  相似文献   

2.
掺杂Ca^2+和Mg^2+对SBN陶瓷介电性能的影响   总被引:1,自引:0,他引:1  
以分析纯的碳酸锶、碳酸钡、碳酸钙、氧化镁和五氧化二铌为原料,采用固相法制备掺杂Ca(Mg)的Sr0.5Ba0.5Nb2O6陶瓷材料.采用X射线衍射仪、扫描电镜和阻抗分析仪,研究掺杂样品的相组成、微观组织和介电性能.研究结果表明,Ca2+掺杂量≤0.23 mol时,Ca2+取代钨青铜结构中A位的Sr2+和Ba2+,随Ca掺杂量的增加,SBN晶格常数逐渐减小.介电温谱曲线显示:在150℃和330℃处出现介电双峰;当Ca2+掺杂量≥0.28 mol时,出现第二相CaNb2O6,此时对应(Sr,Ba,Ca)Nb2O6的介电峰逐渐消失.Mg掺杂的所有陶瓷样品,XRD谱呈现SBN50与MgNb2O6两相共存的情形.在150℃和310℃处同样出现介电双峰,随着Mg掺杂量增加,介电峰为1个单峰,并移向低温.  相似文献   

3.
为研究钛酸铈钡(Ba_(1-x)Ce_(2x/3)TiO_3)纳米管的制备及其铁电性能,以阳极氧化法合成所得TiO_2纳米管为模板,采用水热反应法制备Ba_(1-x)Ce_(2x/3)TiO_3纳米管,分析水热反应温度和Ce(NO3)3浓度对Ba_(1-x)Ce_(2x/3)TiO_3纳米管形貌、结构和铁电性能的影响.利用扫描电子显微镜和X线衍射仪对Ba_(1-x)Ce_(2x/3)TiO_3样品的形貌和结构进行表征,利用铁电分析仪对Ba_(1-x)Ce_(2x/3)TiO_3的铁电性能进行测试.实验结果表明:提高Ce(NO_3)_3的浓度和水热反应温度有利于TiO_2纳米管向Ba_(1-x)Ce_(2x/3)TiO_3纳米管的转变,提高Ba_(1-x)Ce_(2x/3)TiO_3样品的结晶度和铁电性能.在Ce(NO_3)_3浓度为0.010 mol/L、水热反应温度为200℃时,Ba_(1-x)Ce_(2x/3)TiO_3纳米管的剩余极化强度P_r达到最大,为0.69μC/cm~2,矫顽场为17.85 kV/cm.  相似文献   

4.
采用传统的电子陶瓷的制备方法,以铁酸铋(BFO)为掺杂原料,在不同掺杂量制备了Bi(Mg1/2Ti1/2)O3-PbTiO3-xBiFeO3陶瓷.使用X射线衍射仪、介电温谱测试系统、环境扫描电镜、准静态d33测量仪对样品进行表征,结果表明:准同型相界附近的陶瓷试样中,随着烧结温度升高,密度降低,并且在1 075℃烧结温度下,不同BFO含量的样品均形成单一的钙钛矿(ABO3)型固溶体结构.BFO的掺杂能够有效降低粉末的平均颗粒尺寸,普通球磨的粉体添加x=0.015mol BFO在1 075℃烧结的样品表现出较为优秀的铁电性能.  相似文献   

5.
为探究Ba_(1-x)La_(2x/3)TiO_3纳米管的微结构和铁电性能,采用阳极氧化法生成TiO_2纳米管,并以TiO_2纳米管为模板采用水热合成法制备Ba_(1-x)La_(2x/3)TiO_3纳米管,利用扫描电子显微镜(SEM)、X线衍射仪(XRD)和铁电分析仪对不同硝酸镧浓度和水热反应温度下所得Ba_(1-x)La_(2x/3)TiO_3纳米管状阵列的微观结构和铁电性能进行测试分析.结果表明:增大硝酸镧浓度和提高水热反应温度均有利于TiO_2纳米管向Ba_(1-x)La_(2x/3)TiO_3纳米管的转变,并提高其结晶度,在240℃水热温度下制备所得Ba_(1-x)La_(2x/3)TiO_3纳米管的表面形貌最好.铁电分析仪测得Ba_(1-x)La_(2x/3)TiO_3纳米管的P-E曲线具有良好的滞后性,表明样品具有优良的铁电性能,说明增加硝酸镧的浓度和升高水热温度均有助于提高Ba_(1-x)La_(2x/3)TiO_3纳米管的剩余极化强度(Pr)和矫顽场(Ec),水热温度为240℃、硝酸镧浓度为0.01 mol/L条件下制备所得Ba_(1-x)La_(2x/3)TiO_3纳米管的剩余极化强度Pr达到1.32 C/cm2,矫顽场Ec可达3.37 k V/cm.  相似文献   

6.
采用Sol-Gel法在Pt/Ti/SiO2/Si衬底上制备出未掺杂和掺杂Mg的(Ba0.5Sr0.5)0.85Pb0.15-TiO3薄膜.采用XRD、SEM和Agilent 4294A精密阻抗分析仪研究了Mg掺杂量对薄膜的结晶性,表面形貌和介电性能的影响.结果表明:随着Mg掺杂量的增加,PBST薄膜的介电常数减小,介电损耗降低,介电调谐量先减少后增加.当Mg掺杂量为0.8mol%时,PBST薄膜具有最大的优值因子.  相似文献   

7.
Nd掺杂BiFeO3多铁陶瓷的磁电性能   总被引:1,自引:0,他引:1  
采用快速液相烧结工艺制备出Bi1-xNdxFeO3(BNFO-x,x=0.00~0.20)多铁陶瓷样品,研究了掺杂对BiFeO3微观结构和铁电、磁电及介电性能的影响.X射线衍射谱显示样品BiFeO3的相均已形成,且在掺杂量x=0.10附近出现结构相变.掺杂后样品的剩余磁化(2Mr)和剩余极化(2Pr)都有一定程度的提高,以铁电性能改善最为明显.当掺杂量x=0.10时,样品的耐压性能最好,可观察到完全饱和的电滞回线,且剩余极化达到最大值, 2Pr=0.494 C·m-2,比未掺杂时提高了117.6%. 随着Nd的掺杂,样品介电常数随温度变化的关系曲线在尼尔温度之前179℃附近多出一个介电峰,但是在BiFeO3样品中并未发现该介电峰.  相似文献   

8.
采用固相反应法制备了ZnO、Sm2O3共掺杂Ba0.2Sn.8TiO3陶瓷样品,利用X射线衍射方法及介电谱测量方法对样品的结构和介电性能进行了测量分析,结果表明:(1)Zn2+与Sm3+进入Ba0.2Sr08TiO3晶格内,与之形成ABO3钙钛矿型固溶体;(2)介电常数弥散的P过程和弛豫的D过程随着Sm2O3含量的增大均被压低展宽,D的弛豫过程逐渐明显,在Sr2O3为0.06mol时为Debye型弛豫过程;(3) Sm2O3的掺入可降低B a0.2Sr0.8TiO3+ZnO陶瓷介电常数,增大损耗,Sm2O3为0.05mol时是样品的一个过渡组分.  相似文献   

9.
为探究镨掺杂对PZT95/5陶瓷微结构和性能的影响,以一氧化铅、氧化锆、二氧化钛和硝酸镨为原料,采用固相法制备镨离子掺杂PZT95/5陶瓷,分别利用X线衍射、扫描电子显微镜、精密阻抗分析仪和铁电分析仪对样品的微观结构、表面形貌、介电性能和铁电性能进行表征.结果表明:镨掺杂有利于PZT95/5陶瓷铁电三方相到反铁电四方相的微结构转变;掺杂镨可以使PZT95/5陶瓷样品的晶粒发育保持良好,晶粒分布更均匀,结构致密度也有所提高,但镨掺杂过量会抑制晶粒发育;随着镨掺杂量的增加,样品的相对介电常数呈现先增大后减小的趋势,在掺杂物质的量分数为3%时,相对介电常数最大,达到225.9,此时介电损耗为0.011 36;样品的剩余极化强度和矫顽场与介电常数呈现相同的变化趋势,镨掺杂物质的量分数为3%时,剩余极化强度最大,达到11.078 5μC/cm2,矫顽场最大为27.46 k V/cm.  相似文献   

10.
采用阳极氧化法在纯钛片上制备出TiO_2-纳米管阵列(NTAs),用乙二醇溶剂热沉积法在TiO_2-NTAs上负载CdS纳米颗粒.利用XRD、SEM、TEM和UV-Vis漫反射光谱对样品的晶体结构、微观形貌和光学性质进行表征.在不同波长条件下,研究了焙烧温度和CdS负载量对样品的光电流密度影响.结果表明,CdS纳米颗粒已沉积到TiO_2-NTAs内外,所制备的CdS/TiO_2-NTAs样品光吸收带边扩展到了可见光区.在全光谱和可见光谱条件下,CdS的修饰大幅度提高了TiO_2-NTAs光电流密度.当Cd2+浓度为0.005mol/L时,在全光谱照射条件下获得的CdS/TiO_2-NTAs样品光电流密度最大为1.41m A/cm2.  相似文献   

11.
以二氧化钛P25和NaOH为原料,通过水热法制备TiO_2纳米管,考察了碱浓度对纳米管形成、晶型和形貌的影响.采用XRD、TEM、BET、XPS等对产物的组成、结构和形貌进行表征.结果表明,NaOH浓度高于10 mol/L及以上时才能将体系中的P25颗粒溶解-结晶形成钛酸钠卷曲体;水洗、酸洗和煅烧是形成锐钛矿相二氧化钛纳米管的必要步骤.当NaOH浓度为10 mol/L时,纳米管的比表面积达到213.30 m~2/g,为P25的4.2倍;金卤灯下照射24 min对20 mg/L亚甲基蓝的降解率可达100%,而P25仅为63.38%.  相似文献   

12.
采用固相法合成了0.7BiFeO3-0.3BaTiO3-xmolGd2O3固溶体(x=0,0.003,0.006,0.009,0.012).XRD测试结果显示:0.7BiFeO3-0.3BaTiO3在室温下是赝立方相,Gd2O3的掺入抑制了四方相的形成,随着Gd3+掺入量的增加,样品结构从赝立方相向三方相转变.介电性能测试表明:较高频率下,相对于其它样品,掺杂量为0.009和0.012的样品的介电性能明显提高;介电损耗随掺杂量增加明显增大.同时相关测试结果显示:Gd掺杂使样品的介温曲线变平缓,尤以掺杂量为0.009样品最为明显,其介电损耗曲线变化亦较缓慢,表明该样品介电性能的稳定性有较大提高.  相似文献   

13.
采用反应烧结法制备Mg4Nb2O9陶瓷,省去预烧阶段,优化了制备工艺,研究得到Mg4Nb2O9陶瓷样品的相组成、微观形貌以及微波介电性能随着烧结温度的变化关系.由XRD检测到陶瓷在1 200~1 450℃均得到纯相的Mg4Nb2O9陶瓷,在1 400℃烧结保温3h所得陶瓷密度为4.13g/cm3(相对密度94.25%),样品具有清晰的微观形貌,微波介电性能为:εr=12.1,Q×f=169 000GHz,τf=-55.55×10-6℃-1.  相似文献   

14.
采用催化热解方法制备出镓掺杂碳纳米管,并利用丝网印刷工艺将其制备成纳米管薄膜.扫描电子显微镜观察表明,纳米管直径在20~50 nm之间.对此薄膜进行低场致电子发射测试表明,其场发射性能优于同样条件下未掺杂时的碳纳米管、碳氮纳米管和硼碳氮纳米管.当外加电场为1.1 V/μm,发射电流密度为50μA/cm2;当外电场增加到2.6 V/μm时,发射电子密度达到5 000μA/cm2.对其场发射机理进行探讨.  相似文献   

15.
采用固相法,制备了Mg4Nb2O9(MN)微波介质陶瓷,研究了V2O5和Li2CO3共掺杂对MgaNb2O9陶瓷烧结行为、相结构、显微结构和微波介电性能的影响.结果表明,采用1.5%V2O5和1.5%Li2CO3共掺杂,能够将Mg4Nb2O9(135O℃)陶瓷的烧结温度降至925℃,且有助于Mg4Nb2O9单相的形成.3.0%(V2O5,Li2CO3)共掺杂样品在925℃空气中烧结5h可获得良好的微波介电性能(介电常数为13.7,品质因数为77975GHz).  相似文献   

16.
研究了B位Zr4+取代对(Pb0.4Ca0.6) (Mg1/3Nb2/3)O3体系结构及介电性能的影响.研究表明在B位进行Zr取代后,对体系的烧结性能、微波介电性能都有比较明显的影响.随着Zr取代量的增加,体系的体密度,相对介电常数都有了大幅度的提高;Qf0值和τf值也都随着取代量的增加而上升,最后达到饱和.当烧结温度为1260℃(2.5h)时,组成为(Pb0.4Ca0.6){(Mg1/3Nb2/3)0.97Zr0.03}O3的陶瓷样品微波性能为εr=63.2,Qf0=6972GHz,τf=19.8×10-6/℃.  相似文献   

17.
采用传统陶瓷工艺合成了CeO2掺杂(Bi0.94Na0.89Li0.05)0.5Ba0.06TiO3 (缩写为 BNBT6-0.05L)无铅压电陶瓷.研究了CeO2掺杂量(质量百分比为0~1.0%)对BNBT6-0.05L陶瓷相结构、体密度、微观结构及压电与介电性能的影响.XRD表明,CeO2扩散进入了BNBT6-0.05L陶瓷晶格内形成了纯的钙钛矿相.SEM表明,少量的CeO2掺杂,改变了陶瓷的微观结构.介电温谱表明,随着CeO2掺杂量的增加,铁电相向反铁电相转变温度(Td)降低. 室温下,CeO2掺杂量为0.2%时,BNBT6-0.05L陶瓷样品有很好的性能:体密度为5.901 g/cm3,压电常数为142 pC/N,平面机电藕合系数为31.3%, 相对介电常数为860, 介电损耗为0.02  相似文献   

18.
采用草酸、四氯化钛、氨水、氟化铵、硼酸等药品为主要实验原料,通过常温络合-控制水解新实验方法,制备出硼氟共掺杂的纳米TiO_2透明乳液.将样品置于小型太阳光模拟器的模拟太阳光下照射,进行对酸性红3R染料的降解实验,分别对染料初始浓度、样品掺杂浓度、掺杂纳米TiO_2体系pH值、加热回流时间等变量对降解效果的影响进行相关讨论.实验结果表明,硼/氟掺杂浓度达到0.003mol/L,pH值为6,回流时间为15min时,制备的纳米TiO_2样品的光催化性能最佳.在模拟太阳光照射1h后,质量浓度50mg/L的酸性红3R染料溶液降解率可达98%以上.  相似文献   

19.
烧结温度对Bi_(0.7)Ba_(0.3)FeO_3陶瓷介电、铁电特性影响   总被引:1,自引:1,他引:0  
用固相反应法在不同烧结温度下制备了Bi0.7Ba0.3FeO3陶瓷样品,研究了烧结温度对Bi0.7Ba0.3FeO3陶瓷结构、介电和铁电特性的影响.运用XRD进行物相分析可知,Bi0.7Ba0.3FeO3陶瓷样品为正交结构,主衍射峰与纯相BiFeO3一致,烧结温度在870℃以上时样品有良好的结晶度,电阻率达到108Ω?数量级.在一定的温度区间内,介电常数随烧结温度的升高而增大.在低频区830℃烧结的样品的介电损耗比较大,而对应于870℃和900℃两个烧结温度的样品介电损耗有了明显的减小;在高频区介电损耗对烧结温度的依赖性不大.样品的交流电导率随烧结温度的升高而增大.在900℃烧结的Bi0.7Ba0.3FeO3样品的Pr值可达到113.11μc/cm2,远大于纯相BiFeO3.通过Ba2+的A位掺杂进一步提高了纯相BiFeO3的介电、铁电性能.  相似文献   

20.
采用标准电子陶瓷工艺,制备了Ba0.6Sr0.4TiO3/MgO/Mg2SiO4复相陶瓷(MgO和Mg2SiO4按相同重量加入),研究了MgO和Mg2SiO4含量对复相陶瓷微观结构、介电性能及介电可调性的影响.结果表明,随着MgO和Mg2SiO4含量的增加,陶瓷的晶粒尺寸略有增大,低频(100 kHz)介电常数、介电损耗、介电可调度和介电常数温度系数降低.随着偏置电场的增强,介电常数降低,介电损耗变化不大(均在10-3量级).当MgO和Mg2SiO4的百分含量均为30%时,获得了室温介电常数为101.6、介电损耗为0.0017及1.79 kV/mm偏置电场下介电可调度为12.19%、介电常数温度系数为0.009℃-1的介电性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号